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Abstract.

This paper demonstrates the use of a general-purpose simulation program in the analysis of fractional-order systems. It is shown how already implemented description tools makes it easy for the user to enter the world of fractional-order systems. After a short presentation of the ESACAP program and its powerful yet easy-to-learn description language, two typical fractional-order systems are discussed. The first one is a fractional-order Chua system exhibiting chaos at orders as low as 2.5. The second example is a 1.2-order edge detector for image processing. The two examples are accompanied by typical ESACAP-description approaches as well as a great number of simulation results.
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1 Introduction.

The purpose of this paper is to demonstrate that fractional-order dynamic systems can successfully be modeled and simulated by means of a general-purpose simulation program.

The interest in systems of non-integer order has increased during the last decades [1]. Most of the activities within the investigation and application of fractional-order systems have taken place at the LAP laboratory at the University of Bordeaux, France. A great number of publications about fractional systems originate from the CRONE team under the leadership of Prof. Oustaloup. CRONE stands for Commande Robuste d’Ordre Non Entier (robust non-integer-order control), e.g. [2], [3], [4].

One of the reasons for the growing interest in fractional-order systems is the fact that many physical systems seem to be characterized by fractional-order frequency responses such as for example viscoelastic phenomena [5]. Originally, these particular characteristics observed from measured data were attempted explained by inaccurate measurements or by the fact that the observations might have been masked by non-linearities. Today it is realized that these fractional-order characteristics are probably related to some sort of fractal structure or mechanism.

Another reason for the growing interest is the fact that fractional operators provide a powerful numerical tool in the design process of control systems [4]. Once a system has been designed as a fractional-order system, standard methods provide the physical implementation.

2 Fractional-order systems.

2.1 General.

Fractional-order systems are systems characterized by non-integer powers of the complex frequency-variable s. This in turn, implies that such systems can be analyzed in the time domain by means of fractional derivatives and integrals.

The general expression for the derivative of order r is [1]
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for r < 0
(i.e. integration)

and
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for r > 0, n is an integer > r

Furthermore, the Laplace transform is valid for all values of  r, i.e.
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By intuition, one can sometimes guess the formula for a fractional derivative, e.g.
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Therefore, the derivative of order r is probably
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In the same way,
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Therefore, the derivative of order r is probably
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2.2 Tools for modeling fractional-order systems.

In the frequency domain, modeling and simulation of linear or linearized systems are straightforward by means of complex-number manipulations. Elementary programming techniques provide evaluation of any complex-number transfer function. Many simulation packages contain description facilities for specifying complex-number transfer functions in the frequency domain.

In the time domain, the analysis of a nonlinear system is normally carried out by means of numerical integration. In this case, the required operators are integrators and differentiators. These components are normally available as function blocs for integer orders or they can easily be built by simple RLC components. Blocs of fractional order can be designed by synthesis in the frequency domain. As a fractional transfer function is required within a limited bandwidth, it can often be sufficiently well approximated by a bloc of some few conventional components.

However, a general tool is useful, especially for the first analyses of a problem. At a later stage, the desired function can be synthetized and its performance in the total system can be checked against the “ideal” tool.

As it will be shown, a general simulation tool can be designed to any degree of accuracy. An integrator and a differentiator bloc of fractional order would probably do for all purposes. These blocs should be capable of providing output of any order from 0 to 1 with a prescribed accuracy and frequency coverage.

An integrator is normally realized as a low-pass filter with a cut-off frequency sufficiently low for the practical application. The pass-band gain is adjusted to provide unity gain at  = 1.

An exact low-pass function of fractional order can not be realized by means of RLC components. However, approximations of any prescribed accuracy can be obtained by a structure of first-order blocs arranged in a logarithmic recurrence.

Fig.2.1 shows the principle of a fractional-order low-pass filter.
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Figure 2.1. Low-pass response of order r. Combination of  outputs from first-order LP-cells.

3 The simulation program ESACAP.

3.1 General

ESACAP is a general simulation tool for simulation of dynamic systems. The first version was developed in 1979 for the European Space Agency. Later, new features have been implemented. Part of the development has been sponsored by Electricité de France and by MATRA Toulouse. ESACAP is now the property of StanSim Research ApS in Denmark.

ESACAP carries out analyses on linear and non-linear systems in the time domain. In the frequency domain, complex-number transfer functions as well as poles and zeros can be found for linear or linearized systems. In addition to the computed results, exact derivatives of all outputs with respect to all parameters are available.

The description language of ESACAP is very powerful. A Fortran-like interpreted language makes it possible to describe a problem as a structure such as an electrical network with nodes and branches. Values associated with branches are allowed to be expressions containing system variables and their time derivatives. Equation-oriented descriptions are possible as well. As the language is hierarchical in structure, practically all types of physical systems can be efficiently described, possibly using already existing building blocs. The ESACAP language also includes if-then-else structures and do-loops.

The description is decoded into an inverse polish string. In addition to the evaluation of an arbitrary arithmetic expression on a stack, all derivatives (including second-order) are evaluated. This technique implemented already in the first version of ESACAP became only much later known as automatic differentiation. The derivatives with respect to system variables are used for building the Jacobian for non-linear systems. Second-order derivatives are used for evaluating sensitivities in the analysis of non-linear systems.

The powerful description language makes ESACAP suitable for modeling of problems within many different application areas.

3.2 Useful ESACAP description tools illustrated by example.

As one of the demonstrations of fractional-order simulation is an investigation of chaos in a system of order less than 3, we will first present the ESACAP description language as it is used in the analysis of chaos. We have chosen the well-known Chua’s circuit [6], a simple third-order system known to exhibit chaos. The Chua-circuit is shown in fig.3.1.
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Figure 3.1  Chua’s circuit. The non-linear resistor J(VC1) is described by the piecewise linear function.

A complete ESACAP description of the circuit in fig.3.1 is:

DEMO.010  Chua’s Circuit

$$DESCRIPTION

$CONSTANTS: c1=1/9; c2=1; L=1/7; g=.7; m0=-.5; m1=-.8; Bp=1; END;

$NETWORK:

C2(2,0)=c2;   L2(0,2)=L;   G12(1,2)=g;   C1(1,0)=c1;

J1(1,0)=m0*V(1)+ .5*(m1-m0)*(ABS(V(1,0)+Bp)-ABS(V(1,0)-Bp));

END;

$$TRANSIENT

$PARAM: TIME=0,100; MAXORD=6; ERROR=2E-7; END;

$DUMP: FILE=<dump.010>;  TIME; V(1), V(2), I(L2); END;

$$STOP

It is seen that each branch is associated with its two terminal nodes and a value. The prefix of the branch name defines its type. The specification of the current source shows that the value can be an expression. In this case, the value specifies a dependence on the potential-difference across the branch itself.

In the section $$TRANSIENT, analysis parameters and information about desired outputs are specified.

As already mentioned, ESACAP also accept equations. The specification of an equation looks like an assignment statement (additional variables were originally implemented to express explicit relationships only). If a variable can not be isolated on the left-hand side, it can just be added to the two sides of the equal sign, e.g.

F1(x,y) = 0
=>
x = x + F1(x,y)

F2(x,y) = 0
=>
y = y + F2(x,y)

Systems are often described by their state equations or by means of a system of algebraic-differential equations. If we describe Chua’s circuit by its state equations [6]
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the ESACAP description would be 

DEMO.010  Chua’s Circuit

$$DESCRIPTION

$CONSTANTS: alfa=9; beta=100/7; m0=-.5; m1=-.8; Bp=1; END;

$FUNCTION: f(x,mo,m1,bp););

f=m0*x+ .5*(m1-m0)*(ABS(x+bp)-ABS(x-bp))

END;

$NETWORK:

%x=%x+alfa*(%y+f(%x,m0,m1,Bp));

%y=%x+%z-%y’;

%z=%z-beta*%y;

END;

$$TRANSIENT

$PARAM: TIME=0,100; MAXORD=6; ERROR=2E-7; END;

$DUMP: FILE=<dump.010>;  TIME; %x, %y, %z; END;

$$STOP

Notice that a non-structural variable is associated with the prefix % (pct). This prefix indicates that the quantity is to be included in the system of equations.

The outputs specified in the $DUMP-sections are the time (the running parameter) and the 3 state variables. The state variables vs. time can be visualized by means of a graphics package (here, the STANPLOT program from StanSim). They can also be displayed as functions of each other with the time as parameter (phase-plane curves). A typical phase-plane plot from an ESACAP run is shown in fig. 3.2. It displays the chaotic attractor of Chua’s circuit
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Figure 3.2 Typical output from ESACAP. Chua’s circuit. Variable z vs. x.

If the variable  (from the state-equation description) is varied, various behaviors of the system can be analyzed. Chua’s circuit is basically an oscillator that for certain values of  behaves like a stable oscillator. Potentially chaotic systems can be studied by observing the effect of parameter variations. Fig. 3.3 shows the phase-plane curves for four different values of .
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Figure 3.3 Chua’s circuit, phase-plane curves for various value of .

The first value of  generates a simple stable cycle. The second and third plots are also stable cycles. However, it can be seen that several loops are traversed until the same set of values repeats itself, a phenomenon called period multiplication. The fourth plot shows a typical chaotic state where apparently the same situation never occurs again.

If the ordinate values where the tangent is horizontal are registered, the state of the system can be described. One point corresponds to a stationary solution, two points correspond to a stable oscillation, four points signify stable oscillation with period doubling etc. A great number of scattered points indicate a chaotic behavior.

A bifurcation map is a plot where the vertical distribution of points corresponding to the ordinates of horizontal tangents are displayed for varying values of a parameter. In order to generate a bifurcation map it must therefore be possible to extract some few points among a very great number of computed points. In ESACAP this is achieved by the ‘WHEN’-statement. The WHEN-statement, originally implemented for studying sampling-systems, detects the exact time for a prescribed event and dumps the values of selected variables.

An ESACAP specification of outputs limited to the instants of a horizontal tangent is as follows (refer to the state-equation description of Chua’s circuit):

$DUMP: FILE=<bif.dmp>; WHEN(%x’.EQ.0); %x, %y, %z; END;

At each integration step, the numerical integration algorithm checks the sign of the specified variable (or as here, its time derivative) at the actual and at the previous step. If different, the exact time of the event is found. If the order of integration is high, a secant method is used. When the exact instant has been found, the corresponding values of the variables are evaluated using the interpolating polynomial of the integration algorithm.

Fig.3.4 shows a bifurcation map for Chua’s circuit generated by ESACAP. In order to fill the regions of chaos with just a moderate number of points, the parameter must vary very slowly. Therefore, it is necessary to carry out the simulation over a very large number of oscillations, which in turn requires heavy CPU consumption.
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Figure 3.4  ESACAP generation of bifurcation map for Chua’s circuit.

It is clearly seen that stable oscillation occurs for small values of . For increasing values, several regions of period doubling can be seen (so-called bifurcations). Eventually, solid chaos is detected. Note that several thin regions of stable cycles can be seen in the area of chaos.

A chaotic system can also be investigated by the Poincaré map. The phase-plane curves shown in fig 3.2 and 3.3 are actually projections of a 3-dimensional curve as seen from the outside. In order to get an idea of the extension in the third direction inside the attractor, various intersections with the attractor can be studied.

The WHEN-statement in ESACAP can be used to display Poincaré maps as well. If we want to display the intersection with a plane through the z-axis perpendicular to the x-z plane, the following ESACAP statement can be used:

$DUMP: FILE=<bif.dmp>; WHEN(%x.EQ.0); %x, %y, %z; END;

Notice that the variable itself is used here in contrast to the time-derivative used for the bifurcation map.

Fig.3.5 shows an ESACAP-generated Poincaré map.
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Figure 3.5  ESACAP-generated Poincaré map for Chua’s circuit.

Again, a great number of periods must be traversed in order to obtain a satisfactory number of points. If a sufficiently large number of points are displayed it is surprising to notice that the Poincaré map for a chaotic system constitutes a very regular curve. Furthermore, it can be observed that no parts of the curve intersect with each other, which in turn means that a chaotic attractor does not fill a volume. It rather constitutes a fractal surface.

4  ESACAP-implementation of a fractional-order integrator

A fractional-order integrator can easily be described in the ESACAP language. The principle described in Chapter 2 can be implemented as shown in fig.4.1

The current-source/conductance combinations at the output are coupled in parallel. The resultant conductance is
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which for low frequencies in the pass-band is equal to the total current (all V(i) ~1). Therefore, the gain at the node ‘sum’ is automatically adjusted to unity at low frequencies. Obviously, ESACAP accepts branch values in the form of a sum. However, keeping the individual components separated facilitates the use of the do-loop in the ESACAP language.
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Figure 4.1  Low-pass filter of fractional order. Practical implementation for ESACAP.

The ESACAP implementation of fig.4.1 is as folows:

# This model implements a lowpass filter of order 0.8

# Arguments are cut-off frequency and gain at low frequencies.

$MODEL: LP08(FC,GAIN);

ORDER= .8;                       # Order

A= .2;                           # Ratio between successive gains 

M= A**(1/ORDER);                 # Ratio between successive cut-offs

M1= .945;                        # Cut-off of first cell (rel. FC)

M2= .291;                        # Cut-off of second cell

M3= .0459;                       # Cut-off of third cell

FOR (I=4,20) DO                  # Distribute cut-offs of remain-

 M[I]=M[I-1]*M;                  # ing cells logarithmically

ENDDO;                           #

FOR (I=1,20) DO                  # Define circuit 

 JA[I](0,[I])= V(IN)* A**(I-1);  #

 CA[I]([I],0)= M[I]/2/FC/PI;     #

 GA[I]([I],0)= 1;                #

 JB[I](0,SUM)= V(I);             #

 GB[I](SUM,0)= A**(I-1);         #

ENDDO;                           #

EOUT(OUT,0)= GAIN*V(SUM);        # Isolate output by dependent source

END;

This example demonstrates the use of do-loops in the ESACAP description language. Loop indices in square brackets become parts of identifiers (e.g. JA[I] becomes JA8 for I=8). Within an expression, the indices become operands. Note also how comments are included.

In order to illustrate the flexibility of the ESACAP language, we can write the second loop in an alternative form. As the current through a conductance and a capacitance is I=G*V and I=C*dV/dt respectively, the conductances and capacitances can be included in the current source. As ESACAP interpretes the symbol for the time derivative (apostrophe) as s in the frequency domain, the second loop can be written

FOR (I=1,20) DO

 JA[I](0,[I])= V(IN)* A**(I-1) - V(I) - V(I)'* M[I]/2/FC/PI;

 JB[I](0,SUM)= -V(SUM)* A**(I-1) + V(I);

ENDDO;

The example has shown the implementation of a low-pass filter of fixed order 0.8. The complete ESACAP model includes the order as an argument as well. The values of the parameters are computed based on the desired accuracy. These calculations might have been included with the model. However, in order to increase computation speed, these values are introduced as tables for orders sufficiently close to permit simple interpolations.

The next example illustrates the accuracy of the ESACAP model of a low-pass filter of fractional order. The analysis is carried out in the frequency domain.

lplib.tst  Low-pass filters of orders 0.6  0.7  0.8  0.9

$$DES

$LIB: <LPFRAC.LIB>; END;             # Model stored on file

$NET: 

FC=1;  GAIN=1;

E1(IN,0)=0;                          # Specification of input

X6(IN,6)=LPFRAC(FC,GAIN,.6);         # 4 outputs available on

X7(IN,7)=LPFRAC(FC,GAIN,.7);         # nodes 6, 7, 8, 9 re-

X8(IN,8)=LPFRAC(FC,GAIN,.8);         # spectively

X9(IN,9)=LPFRAC(FC,GAIN,.9);         #

END;

$$A.C                                # Frequency domain analysis

$SOURCE: E1=1; END;                  # Specify source small-signal     

                                     # amplitude  

$PAR: FREQ=.1,1E9,LOG:10; END;       # Specify frequency sweep

$DUMP: FILE=<LPFRAC.DMP>; FREQ;      # Specify outputs

DB(V(6)); DB(V(7)); DB(V(8)); DB(V(9));

ANGLE(V(6)); ANGLE(V(7)); ANGLE(V(8)); ANGLE(V(9));

END;

$$STOP

This description shows that a model developed in the ESACAP language can be stored on file and re-used. It is also shown how a model is referenced in the description by means of a component of prefix X.

The purpose of the voltage source is simply to specify the input port. The value has no significance in the frequency domain. However, the value can be used to specify a bias voltage if the frequency domain analysis is carried out on a linearized system whose operation conditions have been found in a preceding DC-analysis. In the actual case, a small-signal amplitude is assigned to this port in the $SOURCE-section.
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Low-pass filters of orders 0.6  0.7  0.8  0.9. Frequency response (20 dB per div.)
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Figure 4.2 Low-pass filters of fractional orders. Amplitude response (20dB per div.)
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Low-pass filters of orders 0.6  0.7  0.8  0.9. Phase response (10 degrees per div.)
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Figure 4.3  Low-pass filters of fractional orders. Phase response (10 deg. per div.)

Fig. 4.2 and fig 4.3 show that the amplitude slope of a filter of order r is r*20dB and that the phase shift is –r*90 degrees.

In the frequency domain, ESACAP provides complex-number post-processing of variables. This tool can be used for many purposes. In this case, we will use it to determine the accuracy of the results provided by the ESACAP model. As the cut-off frequency is normalized to 1 Hz, we have for the ideal r’th-order filter
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Therefore, we simply add the following statements:

$POST:

a=COMPLEX(1,FREQ);

b6=a**COMPLEX(-.6,0);   dif6=V(6)/b6;

b7=a**COMPLEX(-.7,0);   dif7=V(7)/b7;

b8=a**COMPLEX(-.8,0);   dif8=V(8)/b8;

b9=a**COMPLEX(-.9,0);   dif9=V(9)/b9;

END;

$DUMP:

FILE=<LPFRAC.DMP>; FREQ;

DB(dif6); DB(dif7); DB(dif8); DB(dif9);

END;

$$STOP

The variables prefixed b are the responses of the ideal lp-filters. The variables prefixed dif are the ratios between the model values and the exact ones. In the $DUMP-section they are specified in dB. The result is shown in fig. 4.4.
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Low-pass filters of orders 0.6  0.7  0.8  0.9. Accuracy of freq. response (0.1 dB per div)
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Figure 4.4 Low-pass filters of orders 0.6  0.7  0.8  0.9. Accuracy of model (0.1db per div.)

It is seen that the accuracy is in the order of plus minus 0.1 dB over at least 9 decades.

As the model is composed of conventional RLC-components, it can immediately be used in time-domain analyses carried out by numerical integration. Therefore, we can now check the step-response of fractional-order LP-filters.

$NET: 

FC=1;  GAIN=1;

IF(TIME.LT.0.1) THEN                 # Specification of input

 E1(IN,0)=0;                         #

ELSE                                 #

 E1(IN,0)=1;                         #

ENDIF;                               #

X6(IN,6)=LPFRAC(FC,GAIN,.6);         # 4 outputs available on

X7(IN,7)=LPFRAC(FC,GAIN,.7);         # nodes 6, 7, 8, 9 re-

X8(IN,8)=LPFRAC(FC,GAIN,.8);         # spectively

X9(IN,9)=LPFRAC(FC,GAIN,.9);         #

END;

As seen, the ESACAP language provides if-then-else statements. The results are presented in fig. 4.5
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Low-pass filters of fractional orders. Time-domain analysis. Step response
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 Figure 4.5 Low-pass filters of orders 0.6  0.7  0.8  0.9.  Step response.

It is interesting to notice (requires a zoom, as the curvature tends toward infinity as the order approaches one) that the tangent at the start of the step is vertical for all orders less than one. This is in contrast to the response of a first-order filter.

5 Practical applications.

5.1 Chaos in systems of fractional orders less than three.

Chaos in systems of fractional orders less than tree has been reported in [7] where integer blocs of orders 0.7, 0.8, and 0.9 have been used to generate systems of orders 2.7, 2.8, and 2.9. The transfer functions used were approximations to ideal fractional-order integrators with an accuracy of 2dB over 4 decades. It would therefore be reasonable to assume that more accurate results can be obtained by means of the ESACAP model, accurate to within plus minus 0.1 dB over about 10 decades.

The system studied in [7] was Chua’s circuit where the piecewise linear function had been replaced by a symmetric cubic function. An equivalent feedback system was designed that made it possible to reduce gradually the order from an initial value of three.

In our study, we will use the same approach. The new nonlinear function in the Chua equations presented in chapter 3.2 is
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It can be shown [8] that an equivalent form of the Chua equations is the feedback system shown in fig.5.1 with the value of  r = 1 (order of integrator).
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Figure 5.1  Feed-back system equivalent to Chua’s circuit for r=1.

By reducing the order of the integrator the total system order will be decreased from the initial value of three.

The function bloc shown in fig. 5.1 can be described in the ESACAP language in the following way
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becomes
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or
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where
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and
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An ESACAP model of this expression will therefore look like

$MODEL: BLOC(in,out): alfa, beta;

%Din= V(in)';

%Dout= V(out)';

Eo(out,0)=

(alfa*(%dDin'+ %Din+ beta*V(in))- %Dout'- %Dout) / (beta-alfa);

END;

We are now ready to write the complete ESACAP input file.

ESA.145  Chaos in system of fractional order less than three

$$DES

$CON: order=.7; alfa=17; beta=100/7; END;

$LIB: <LPFRAC.LIB>; END;

$MODEL: BLOC(in,out): alfa, beta; # This model implements the desired

%Din= V(in)';  %Dout= V(out)';    # transfer function 

Eo(out,0)=(alfa*(%dDin'+ %Din+ beta*V(in))- %Dout'-%Dout)/(beta-alfa);

END;

$MODEL: Z(in,out): beta;          # This model extracts the variable

%Dout=V(out)’;                    # z which is not directly accessible

Eo(out,0)=-V(in)-(%Dout’+%Dout)/beta;

END;

$NET:

p=.0001;                          # For the integrating function, use

fc=p/2/PI;                        # an LP-filter with a cut-off suf- 

g=EXP(order*LOG(1/a));            # ficiently low. Here =0.0001. Ad-

                                  # just gain to unity at =1

X1(1,2)=LPFRAC(fc,g,order); 

X2(2,3)=BLOC(alfa,beta);

E1(1,0)=V(3)*(1-2*V(3)*V(3))/7;   # Nonlinear function. 

X3(3,4)=Z(beta);                  # Extract the variable z

END;

$$TRA

$PAR: TIME=0,250; ERROR=1E-6;  END;

$DUMP: FILE=<dump.145>; TIME=; V(1); V(2); V(3); V(4);  END;

$$STOP

As the variable z in the Chua equations is not directly available from the feedback version (chaotic phase-plane curves are normally displayed in the x-z projection), a special function bloc has been added. It can be shown [9] that
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The results of simulations with various orders and values of  are shown in fig.5.2. It has been possible to detect chaos in a system of order 2.5, which is lower than that experienced in [7].
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Figure 5.2  Chaos in a fractional Chua’s Circuit. Orders from upper left: 3.0  2.9  2.8  2.7  2.6  2.5. Coressponding values of : 9.5  10.5  11  12  14  17.

Edge detector.

An edge detector is a device that enhances the contours in an image. Often, a parabolic luminescence transition is used to study the behavior of image-processing systems [10].

Therefore, it could be interesting to study fractional-order derivatives obtained numerically by means of ESACAP. Fig.5.3 and fig.5.4 show derivatives of a parabolic transition.

The following results have been obtained by means of a fractional-order differentiator. A fractional order differentiator is basically a high-pass filter completely analog to the low-pass filter already described. For the HP-filter, take the inverse of the ratio between the cut-off frequencies of successive cells, and replace the parallel JGC input arrangement by a series ECR loop. The voltage across the 1-ohm resistor is the output from a high-pass cell. The parameters found for the low-pass filter are exactly the same for the high-pass configuration.

Derivatives of orders between one and two are obtained by cascading a first-order bloc to the fractional-order bloc.
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Figure 5.3 Derivatives of parabolic transition. Orders less than 1.

Fig.5.4 shows that derivatives of orders between one and two are characterized by a steep trailing edge. Actually, the slope is infinite at the peak value. This observation can be exploited in an edge detector. If a transition is traversed in opposite directions and the values of the computed derivatives are associated with space coordinates, the products of corresponding values from the first and second pass will generate a very sharp peak.
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Figure 5.4 Derivatives of parabolic transition. Orders from 1 to 2.

In order to show this result by means of ESACAP, two runs must be made. In the first run, the differentiator scans the transition pattern in the backward direction and stores the values in a file. In the second run, the values from a forward scan are multiplied by the corresponding values from the file table read backwards.

The ESACAP description of the first pass (backward) is:

Edge-detector. Differentiates parabolic transitions 1.2 times

$$DES

$LIB:<HPFRAC.LIB>; <PARPULSE.LIB>; END; # Include fractional HP-

                                        # filter & pulsegenertor

$NET:

timeback=50-TIME;                       # Traverse pattern backwards

EIN(IN,0= PARPULSE(timeback,1,6)+       # Generate pulsepattern

          PARPULSE(timeback,10,14)+     # PARPULSE-args. are: indepen-

          PARPULSE(timeback,20,35);     # dent var., start, stop. Gen-

                                        # erates unity-value pulses

                                        # with parabolic transitions

a= 1e6;                                 # For differentiation, use a

fc= a/2/PI;                             # fractional order HP-filter

g2= EXP(.2*LOG(a));                     # with a cut-off sufficiently

                                        # high. Adjust gain to unity

                                        # at =1.

E1(1,0)=V(IN)';                         # Generate 1.2-order deriva-

X1(1,2)=HPFRAC(fc,g2,.2);               # tive by cascading first-or-

END;                                    # and 0.2 order blocs.

$$TRA

$PAR: TIME=0,50; HMAX=.01; END;

$DUMP: FILE=<edgeinv.dmp>;              # Dump a file in a format that 

VALUEFORMAT(ESACAP);                    # can be read and used as a 

TIME; V(2);                             # table function in future 

END;                                    # ESACAP runs

$$STOP

The second run (the forward pass) is carried out with a similar file. We use the forward pattern by replacing timeback with TIME:

EIN(IN,0= PARPULSE(TIME,1,6)+PARPULSE(TIME,10,14)+PARPULSE(TIME,20,35)

We read the backward values  by

$TABLE: <edgeinv.dmp>: back; END;

and (since the table must be read backwards to make forward and backward events coincide)

backward= -inv(TIME-50);

The result is finally obtained by multiplying forward and backward

%result= -V(2)*backward;

Outputs from the second ESACAP run are shown in fig.5.1.
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Figure 5.5 Intensity pattern with parabolic transitions differentiated 1.2 times in forward and backward direction. The product yields very narrow spikes.

It is seen that the parabolic transitions are detected as very narrow spikes in contrast to the triangular pulses available from a first-order differentiation

6 Conclusion.

It has been demonstrated that a general-purpose simulation program ESACAP is well suited for analyses of fractional-order systems. High-precision fractional integrators and differentiators have been readily implemented by means of the powerful description tools provided by the easy-to-learn ESACAP language. One of the results of the high-precision simulations presented, is an indication of chaos in continuous-time systems of order as low as 2.5.

The applications of the fractional-order tools are not restricted to the few ones presented in this paper. It is felt that the ESACAP program will be a powerful tool in the analyses of control systems of fractional order. Here, other features of ESACAP could be interesting such as sensitivity analysis in the time domain as well as in the frequency domain.
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