
Simulation of Motion with Collisions Using
Modelica

Vadim Engelson, Dag Fritzson, Peter Fritzson,
(vaden,dagfr,petfr)@ida.liu.se

Dept. of Computer and Information Science
Linköping University, S-58183, Sweden

Abstract

Collision detection and response is one of the most difficult areas in simulation
of multibody systems. Two known approaches, the impulse-based method and the
force-based (penalty) method, can be applied for multibody simulation in Modelica[13].
The impulse-based method requires instantaneous modification of some variables,
but such modification is not always possible in Modelica. The force-based method
leads to stiff ODE, which can be handled by solvers used with Modelica. We suggest
a new way to express the penalty coefficients. The force-based method, however,
requires computation of penetration depth which is time-consuming.

Calling external functions is a preferable method to integrate collision detection
algorithms with practical physical models, since body geometry is stored externally.
We describe an interface with collision detection tool SOLID.

Keywords: Mechanical modeling, Simulation, Modelica, Collision Detection

1 Introduction
In mechanical systems certain machine elements usually interact with each other.

When a mathematical model of such a system is designed, the interactions between the
parts can be divided into the two following categories:

• Mechanical jointsare used for definition of permanent constraints of motion.

• Mechanical contactsare almost instantaneous, typically short-time interactions caused
by non-penetration contact forces arising between the bodies in the model. The
forces occur when the body surfaces touch each other. Two major phenomena oc-
cur in mechanical contacts are friction contacts (causing static or dynamic friction
forces) and collision contacts (causing collision response forces).

Computation of contact forces is a difficult task. The bodies might move in a compli-
cated way, and they might have a complex geometry. When at some instant they touch
each other, penetration of the bodies should be prevented. There is a tradeoff between ef-
ficiency and accuracy. One of the goals of Modelica simulations is interactivity, therefore

the computation should have at least the same speed as the processes in the real mech-
anisms. There exist accurate methods for contact force computation based on finite ele-
ment methods and other methods using subdivision of bodies into very small fragments.
Currently these cannot run at interactive speed.

The most accurate and realistic methods used in mechanical simulations of contacts
are developed in the area of mechanical analysis called tribology. This theory takes into
account the lubricant properties.

One of the difficulties with the computation of contact forces is the variety of surface
geometries. For certain kinds of surfaces (plane, spline of 2nd order) there exist collision
checking methods and approaches to calculate the forces that arise. Such systems in gen-
eral use higher order polynomials to compute forces from geometrical relations. Theory
and applications of contact situations are discussed, for instance, in [16].

An accurate method (e.g. a FEM method) for contact force computation requires that
the surfaces of two colliding bodies are covered by a mesh, and that the relevant contact
force is computed for each node. The resulting force is then found by integrating of all
the forces acting on the contact surface. Experiments with contact computation of rolling
bearing models [5] show that this method is accurate, but requires tremendous computing
resources.

The major advantage of using Modelica[13] is hybrid (both continuous and discrete)
modeling in multiple application domains (mechanics, electrical, hydraulic, etc.)

The Multibody System (MBS) library in Modelica[14] is used for mechanical model
simulation. Currently this library supports simulation of models with rigid bodies and
joints. Friction occurring in the joints can optionally be taken into account in the models.
However, collision detection and collision response is not supported.

The goal of this work is to identify the ways to add collision response to mechanical
simulation models based on MBS.

Our approach to modeling collisions is based on combining several components. In
order to do that, collisions between bodies should be detected, collision response should
be evaluated, and this response should in some way affect the simulation.

The structure of the report and the relation between its parts is shown in Figure 1.

Application to
multibody
dynamics

Force

Collision
detection

SOLID

penetration depth
computing the

Penetration

Force
creates

Application to
multibody
dynamics

Impulse

Collision models

Figure 1: The structure of the report.

The two major collision models used in the simulation are impulse-based and force-
based models. Both assume that the bodies are rigid. The impulse-based approach uses
collision impulses between the bodies (Section 2). The force-based approach computes
a non-penetration force (Section 3). A traditional variant of the force-based approach is
the penalty method which assumes that bodies in contact behave like objects connected

by a spring and damper. We consider these methods in application to Modelica. A new
method for computing force from penetration depth is given in Section 4. There is a num-
ber of common properties of collision detection tools (Section 5). A the particular tool,
SOLID, is used for finding the penetration depth (Section 5.2). Section 6 illustrates how
the routines for computing the forces are integrated with mechanical models in Modelica.

2 Impulse Model
A standard way of handling collisions in mechanics is based on the linear momentum

preservation law.

2.1 Impulse and Velocity Equations

In the equations belowma, mb are masses of bodiesA andB; va, vb are velocity
vectors of bodiesA andB before the collision;v′a, v

′
b are the velocity vectors of the

bodies after the collision.
The total linear momentum of a system consisting of bodiesA andB is preserved if

there is no external impact:mava +mbvb = mav
′
a +mbv

′
b.

The change of the projections of the velocities of point masses on~n (normal to the
collision plane) can be expressed using the restitution coefficientε = (v′a− v′b)/(vb− va),
which can vary from absolutely elastic collision (ε = 1) and non-elastic (completely
damped) collision (ε = 0), depending mainly on material properties of bodiesA andB.
If object B is rigidly attached to the inertial systemv′a = −εva.

Also, the angular momentum of two colliding bodies is preserved:Iaωa + Ibωb =
Iaω

′
a + Ibω

′
b, whereω andω′ are angular velocities before and after the collision,I is

inertia tensor.
Equations for computations ofω′ can be found in [20]. Derivation of the equations we

use is available in [17].
Several assumptions (see e.g. [10, 19]) are taken into account when the law of linear

momentum preservation is used for physics-based simulation:
— Collision duration is negligible.
— There exists just one point of collision.
— The colliding bodies don’t move during the collision.
— No other forces than collision force act on the bodies.
— The impulse gives instantaneous change to the linear and angular velocities of the

colliding objects.

2.2 Finding collision time and plane

Some systems [19] are constructed so that collision takes place when the distance
between the closest features of two bodies is less than some thresholdT . The exact time
of collision (if it happens at some instant between two time frames) is not computed.
Penetration is avoided by choosing a safe maximal time step (∆t) and estimating the
maximum speed (vmax), so thatT > vmax∆t.

If penetration occurs the time step should be changed and some backtracking in the
solution process must be performed. Of course, this requires fine-grained control over the
differential equation solver that is used for numerical simulation.

Other systems [17] search for exact time of contact, using the method of bisection.

The time interval normally used in the solver is divided by two, and the time of contact
is searched in one of two smaller time intervals. This subdivision continues until some
tolerance boundary is reached. This requires even more control over the solver.

The collision plane for disjoint objects is defined as follows. We assume that bodies
consist of such features as vertices, edges and faces. If one of the colliding features is a
face, this face is used as a collision plane. If vertices or edges are the closest features, the
shortest line between them is used as a normal to the collision plane.

The situation in which a body is resting on a surface is treated as a constraint (giving
an additional equation) or as series of micro-collisions (as proposed in [10]).

2.3 Simulation

Since the velocity is not continuous in the impulse-based model, it is not very appro-
priate for use with traditional ODE solvers. Actually, the continuous integration process
in the solver should stop at the instant of collision and resume with the new velocity, as it
is done, for instance, in Modelica.

An alternative approach is based on writing a system of non-differentiable equations
and applying a Newton method specially devised for such equations [15]. This method
has successfully been applied for body impact with friction by Johansson and Klarbring
[6].

Variations of the same impulse-based model [10] can describe rolling, sliding, resting
and bouncing. This mathematical model has been combined by Zhang [19] with collision
detection algorithm ICOLLIDE [7] to form an ODE-based simulation tool. This model,
however, assumes that between the collisions the objects have ballistic trajectories, i.e.
they are not constrained by revolute and translational joints.

2.4 The Impulse-Based Approach and Modelica

Modelica has capabilities for modeling the impulse-based collision response algo-
rithm.

The Modelica language, like some other modeling and simulation tools, has support
for instantaneous change of some variable values during simulation. This change might
happen at special simulation steps, calledevents. At these events the continuous integra-
tion (i.e. the process of solution of the system of differential and algebraic equations)
stops, specific equations valid for this event are solved, variables obtain new values, and
then the integration continues. This is the way Modelica carries outhybrid modeling,
where both continuous and discrete behavior of the system are described in the same
model.

2.5 Colliding Pendulum Example

It is possible to use thewhen andreinit statements in the MBS library context.
The pendulum example (see Figure 2) illustrates the use of the MBS library for a

model with impulse-based collision response. The state variableqd = q̇ in this model
is the angular velocity of the revolute joint of the pendulum, and the model makes an
assumption that the velocity (which changes instantaneously at the moment of collision)
is proportional toqd . This assumption is wrong in the more complicated cases. The
change of the angle of rotationR1.q is shown in Figure 2.

model Pendulum
"Impulse-based model of collision of pendulum end with an obstacle"
Inertial i;
RevoluteS R1(n={0,0,1},q(start=1));
BodyBase M1 (m=50,rCM={0,0.5,0},I=[0,0,0;0,0,0;0,0,0]);
Bar B (r={0,1,0});
parameter Real restitution=0.5;
parameter Real obstacle_x = 0.5 " x coordinate of obstacle";

equation
connect(i.b, R1.a);
connect(R1.b, M1.a);
connect(R1.b, B.a);
when (B.r0b[1]>obstacle_x) then

reinit(R1.qd,-restitution*R1.qd);
// A problem is how to propagate this change to velocity of B

end when;
end Pendulum;

���
���
���
���

���
���
���

���
���
���

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

q

0.5

X

Y

B

M1 R1

Figure 2: Simple pendulum colliding with an obstacle at pointObstaclex = 0.5. The
plot shows the angle of rotation of the pendulum colliding with an obstacle. The
restitution coefficient isε = 0.5. The collision happens when the angle reaches
R1.q= π + arcsin(Obstaclex) ≈ 3.66.
.

2.6 The Problem of Non-State Variables

There is one major difficulty in applying the impulse-based model to mechanisms with
rotating parts.

In order to apply the impulse-based approach, the velocity should be changed, ac-
cording to the rules,v := g(v), whereg can be a complicated function depending on
collision details. Modelica allows only instantaneous change ofstatevariables. In the
MBS models, which include rotating bodies, the linear velocity is not a state variable. It
is a dependentvariable that can be computed from state variables. There are only two
ways to handle with this difficulty:

• Restructure the model so that velocities become state variables, and apply impulse-
based approach to this model.

• Re-initialize the state variablesq in such a way (q := f(q)) that the correspond-
ing velocities change (v → g(v)) according to the impulse-based approach. The
difficulty is to find the functionf from g.

2.7 Restructuring the Model of Colliding Double Pendulum Example

It is possible to use a kinematic loop in order to restructure the double pendulum
example (see Figure 3). In particular, the double pendulum model with 2 revolute joints
(containing 2 state variables) (Figure 3(a)) can be replaced by a closed kinematic loop
with 2 prismatic joints (with state variables), one rotational joint necessary for cutting
kinematic loops, and 2 revolute joints (without state variables) (Figure 3(b)) .

Both models (a) and (b) result in the same motion when no collisions occur, but they
use different state variables. The Modelica model for the construction in Figure 3(b) is
given below. The connection diagram of this model is shown in Figure 4.

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

������������
������������
������������
������������

������������
������������
������������
������������

����
����
����
����

XR1.q

R2.q

Y

����
����
����
����

X

Y

R1.q

R2.q

obstacle_y=
-0.3

(a) (b)

P2.q

P1.q
(0.2,0.8)

Figure 3: Double pendulum (a) combined with additional joints to form a kinematic loop
(b).

Figure 4: Double pendulum model with kinematic loop, graphical presentation.

model Pendulum
parameter Real obstacle_y=-0.3;
output Real x;
output Real y;
output Real dist;
parameter Real restitution=0.5;
BodyV M1 (mass=50,r={0.5,0,0},

Shape="box", Size={1,0.1,0.1});
BodyV M2 (mass=50,r={0.5,0,0},

Shape="box", Size={1,0.1,0.1});
RevoluteCut2D rc;
// some objects presented in the diagram are omitted here

equation
x=P1.r0b[1];
y=P2.r0b[2];
dist=obstacle_y-y; // positive when collided.
when (dist>0) then

reinit(P2.qd, -restitution * P2.qd);
// change in linear velocity of the prismatic joint
end when;
// connections presented in the diagram are omitted here

end Pendulum;

When simulated and visualized, this model demonstrates a correct bouncing behaviour.
The difficulties with this approach are:

• Each body in the multibody system requires a specially designed construction with
kinematic loop, which leads to a huge number of additional objects.

• Computations with kinematic loops easily reach singularity points where solvers
cannot find an appropriate solution (in the case above this happens when the angle
R2.q crosses 0).

2.8 Using Dependencies Between State Variables and Body Velocities

Computing the dependencies between the state variables and body velocities can be
difficult. It should be noted that in a tree-like structure of a multibody system, the collision
of a body in one node can cause the change of velocities in all joints between this body and
the ”root” of the tree. The technique for this propagation of velocities has been developed
in [11] as well as [12] (p. 146). This is a sequential algorithm based on sending three
”test impulses” through the links of the multibody system. It would be rather hard to
implement the algorithm in the connection-based MBS model.

2.9 Limitations of the Impulse-Based Method in Modelica Models

MBS-based models might contain static objects, single bodes, and multibodies (ob-
jects consisting of more than one single bodies connected by revolute and prismatic
joints).

The impulse-based approach can easily be used in MBS-based models if the impact
of collision on multibodies bodies in the system is negligible.

For instance, a system of single free-flying bodies, which collide with the walls of
some volume, and which may also collide with robot manipulators. The collisions affect
the free flying bodies, but they do not affect the robot.

Currently, this restricts applicability of the impulse-based model for dynamic analysis.
If an appropriate solution to the problems mentioned in Sections 2.8 and 2.7 is found,
collision processing can be added to arbitrary MBS models.

3 The Force Model of Collision
An alternative approach to collision processing in mechanical systems is based on

the force and torque model of collision. We assume that colliding bodies penetrate and
that a separation force is caused by this penetration. This force tries to prevent further
penetration and to separate the colliding bodies.

It is well known that during the collision a relatively large force occurs between the
two colliding bodies for a very short period of time. The value and the direction of the
force can be approximately computed for each simulation time step. The following prop-
erties of the collision force should be taken into account:

• The collision force and collision torque acting on an object is zero if the object does
not collide.

• Between the start of collision and the end of collision a force is activated that pre-
vents further penetration.

• If an ideal collision is modeled (collision of points masses), the resulting velocities
after the collision are given by the law of preservation of linear momentum.

• A contact force acting on a body resting on a horizontal platform compensates for
the gravitational force applied to the body. Therefore such an object does not move
(its vertical acceleration and velocity is zero).

In practice it is important that the force is differentiable and the total mechanical
energy of the system is consumed (not produced) during the collision. Some energy is
transformed to the thermal energy.

In order to balance the required accuracy and available computational power of Mod-
elica simulations, we derived the following rules for collision force computation (some of
the terms are discussed in the following sections):

• The collision force acting on a body is zero if the body does not penetrate with any
other body.

• Perfectly rigid bodies do not penetrate each other during contacts. However, in
practice physical bodies always penetrate a distance which is a small fraction of
their size. If bodyA penetrates bodyB, collision forces are created to act on the
objectsA andB and are applied at the point of contact on each body. The force is
directed so thatA andB are pushed away from each other due to this force. The
direction of this force corresponds to the shortest displacement that can separate the
bodies.

• The magnitude of the force is proportional to the depth of penetration ofA andB.
This depth is the length of the shortest displacement that can separate the bodies.
This corresponds to the model of spring and damper, inserted between the bodies.
The bodies are rigid, but the spring and the damper are not rigid. This also cor-
responds to the physics of collisions between elastic and homogeneous (isotropic)
bodies.

3.1 The Point of Contact and Direction of Collision Force

If the separation force should be computed during several time steps, then the point
of the very first contact can differ from the point of contact a few steps later. An example
of such a behaviour is two bodies colliding and then keeping sliding contact. In this case
the point of the first contact cannot be used for evaluation of contact force for the next
steps. The direction of the collision force is usually taken as opposite to the velocity of
the contact point.

Collision detection software packages usually do not find the point of the first contact.
They just determine a point which belongs to the intersection of the objectsA andB if
they collide. If the objects do not collide, the closest pair of their points can be determined.
Obviously, these points may become irrelevant for further computation in the case of a
long contact between the bodies.

3.2 Penetration Prevention Model

In our approach the separation force is applied at the corresponding closest points.
The forceF in direction~c is applied to the bodyB at the pointPBA; it pushes out body
B from bodyA. The opposite force−F in direction−~c is applied to bodyA at the point
PAB, and pushes bodyA away fromB.

c

c

PBA

PAB

B

A

B()

Figure 5: Collision geometry in the simple case: a single vertex ofB is located withinA.

4 Computation of the Force from Penetration Measure-
ment

The experiments with various approaches to the computation of the collision forceF
have been done in the following stages:

• An equation forF with some unknown coefficients is chosen.

• A series of simulations is performed to find the dependency between the coeffi-
cients, the body velocity before the collision, and the velocity after the collision.

• The inverse dependency between the velocities and the coefficients is computed.

• Since the velocities can be computed using the law of conservation of linear mo-
mentum and the restitution coefficient, the coefficients forF can be found.

The formula forF can be found from the laws of dynamics. During the collision
(0 < t < τ) the velocity changes fromv(0) = v0 to v(τ) = v′. Therefore the actual
dependency can be expressed as∫ τ

0
F (t) dt = m(v′ − v0) .

This definition, however, cannot be used for modeling the force in a dynamic simu-
lation since the timeτ is not known at the start and during the collision. Furthermore, if
some other forces are applied to the body, the collision can go over to a stable contact. In
this caseτ = +∞.

τ

V’

V0

Penetration

Acceleration

Velocity

time

V0

Penetration

Acceleration

time
τ0

V’

Velocity

Figure 6: Collision depth, velocity and acceleration in case of elastic(left) and non-elastic
(right) collision.

Figure 6(left) displays what might happen with penetration depth, velocity and ac-
celeration during the collision time in the case of an elastic collision. In the case of
a non-elastic collision (Figure 6, right), the penetration depth, velocity and acceleration
become zero after the timeτ . If the body has a non-elastic collision with a horizontal plat-
form, and gravity is present, the penetration (directed downwards) is slightly more than
zero, and the collision force (directed upwards) is slightly below zero, which compensates
for the gravity force (directed downwards).

The following notation will be used below:

• F (t) — collision force during the collision between a body and a fixed immovable
obstacle.

• k,K, q — collision coefficients, they will be used in further computations.

• x(t) — penetration depth.

• v(t) = ẋ(t) — speed of change of the penetration depth.

• m — mass of the object penetrating the obstacle.

4.1 Constraints on Force Equations

The following constraints should be used in order to derive the equation for the force
magnitude.

• Conditions at the start of the collision areF (0) = 0, x(0) = 0, v(0) = v0 > 0.

• During the collisionF (t) < 0, x(t) > 0, v(t) changes from positive to negative.

• If no external force act on the colliding body (or this force is negligible), it behaves
exactly according to the impulse law. The time when collision ends isτ . Then
F (τ) = 0 , x(τ) = 0, v(τ) = v′ = v1 = −εv0 < 0 — the speed at the end of the
collision can be predicted using the restitution coefficient0 < ε < 1.

• If a constant external forceFext acts on the colliding body, it either behaves as above
or, in caseFext is large enough, the body rests on the obstacle, and the collision
never ends:limt→∞ F (t) = −Fext — the collision force should compensate the
external force;limt→∞ x(t) = xrest > 0 — the penetration depth should stabilize
at some value;limt→∞ v(t) = 0 — the body rests, i.e. it does not move anymore.

4.2 A Collision Force Model Based on Position and Velocity

By integrating the equation system consisting ofF (t) = mẍ(t) andF (t) = −p(x(t))
for any functionp (that satisfies conditions above) we show in [20] that for collision force
models that are based on position only, the resulting contact models are purely elastic.
How can we vary collision elasticity ?

First, consider what can be done with the original expression for spring force,F =
−Kx. We know thatF (0) = F (τ) = 0. The velocities differ:ẋ(0) 6= ẋ(τ). Therefore
the velocity (or any expression based on velocity) cannot be added to−Kx.

Another operation that can be applied to−Kx is multiplication. Our hypothesis is that
a functionH is applied toẋ and the result is multiplied by−Kx, i.e.F (t) = −KH(ẋ)x.

The equationF = −1Kx produces a correctF for the case where the restitution
coefficient isε = 1. The functionH should be equal to 1 in the case ofε = 1. Therefore
it is convenient to representH(u) as1 +G(u). ButH is a function of velocity, therefore
(if we choose the simplest alternative)H = 1 + kẋ. The complete expression isF (t) =
−(1+kẋ)Kx. SinceK is a constant and body massm is a constant it is possible to replace
K byKm (for brevity of the solution). The equation is thenF (t) = −(1+kẋ)Kmx. The
parameterK is the penalty coefficient. The parameterk is the damping factor coefficient.

The model can be expressed as a system of equations:

F (t) =

{
−(1 + kẋ(t))Kmx(t), if x(t) > 0

0, if x(t) ≤ 0

F (t) = mẍ(t)

ẋ(0) = v0

x(0) = 0

This equation system can be solved numerically by Mathematica. The values of
v0, K, k have been chosen andv(tend) has been computed, wheretend is some instant
after the collision is finished.

Whent > τ (after the collision)F = 0 and thereforev(t) = v′.
Experiments show that the resulting velocityv′ is almost independent ofK. In the

rest of the discussion we assume thatK = 1.
The resulting restitution coefficientε can be computed from the solution of the equa-

tion asε = −v′/v0. The values ofv0 andk affectε, therefore we will write furtherε as a
function,ε(v0, k).

How can we find an appropriatek depending on the velocityv0 at the start of the
collision and the known restitution coefficientε of the material ?

First we notice thatε resulting from the solution does not change if we multiplyv0 by
some number and dividek by the same number.

Now we can check the properties ofε(v0, k) in order to extractk(v0, ε). It is hard to
do without having an explicit equation relating these values. This equation is too com-
plex to be solved symbolically. Therefore numerical experiments have been done. Since
ε(v0, k)=ε(v0k, 1) (using the above result) it is enough to consider the functionε(u, 1),
whereu = v0k.

It appears thatε(u, 1) ≈ 1/(u + 1). Assuming thatε(u, 1) = 1/(u + 1) the value of
k can be extracted. Sinceε(v0k, 1) = 1/(v0k + 1), we can extractk = 1/(v0ε(v0, k))−
1/ε(v0, k). This expression withrequiredε can be inserted into the original equation:

F (t) = −(1 + (1/(v0εrequired)− 1/εrequired)ẋ(t))Kmx(t)

This equation is solved numerically. It appears that now the resultingε differs from
the required one by at most 0.093, which, we believe, is fairly good approximation. This
precision does not depend onv0,m andK.

5 Collision Detection Software
5.1 General Properties of Collision Detection Software

Collision detection is widely used in simulation of multibody systems, in design of
virtual environments, and in general 3D graphics. Given coordinates of two or several
bodies, collision detection functions determine whether the objects share common points
in space, and if they are close enough, determines the distance between them. Each time
when collision is examined, the three steps are performed:

Choice of candidates for collision.On this stage the bodies that cannot collide due to
simple geometrical relations between them are rejected. This selection is based on
axis-aligned bounding boxes of the bodies. A bounding box is usually a good ap-
proximation of body position and size. It is easy to compute the bounding box from
body geometry (either statically or dynamically). There exist efficient algorithms
[7] to check whether any bounding boxes in the 3D space intersect.

Low-level collision detection and distance determination.When bounding boxes of a
pair of bodies intersect, the components (features) of the bodies are checked for
intersection. It is easy to check whether triangles intersect, and find the distance
between them. There exist methods for more complex features, such as spline sur-
faces. However it can be difficult to define a body using such surfaces in a consistent
way. Also, collision detection for complex surfaces might be time consuming.

If the bodies are disjoint, the low-level collision detection algorithms find the dis-
tance between the closest features of the objects. They also determine the closest
points on these features.

In the bodies intersect, the algorithms determine a pair of features that intersect.

5.2 Using SOLID for Collision Detection

We chose SOLID [3] as collision detection package for our experiments. In this sec-
tion we discuss using SOLID interface functions (Section 5.3) and how the shortest sepa-
ration vector (defined in Section 3.2) is computed using SOLID callback function (Section
5.4). The shortest separation vector defines direction and magnitude of penetration depth.
The penetration depth is then used for computation of collision force (Section 4).

5.3 Using SOLID interface functions

When SOLID is used the following steps are performed:

• Object shapes are created, defined by list of coordinates of all their vertices. There
exist predefined primitive shapes (box, cone, cylinder and sphere). A complex
shape can be constructed from one or several so called polytopes. Each polytope is
a point, a line, a triangle, a tetrahedron, a convex polygon or a convex polyhedron.
Polytopes are always defined by list of coordinates of all their vertices.

• The bodies are created (instantiated) based on the corresponding shape. There can
be several bodies of the same shape. The STL[1] is currently used as a file format
for geometry description. This format contains triangles with coordinates of their
vertices as well as normal vectors. This representation is translated into a collection
of SOLID triangles to form a shape.

• The collision detection is performed for each time frame. In order to describe the
state of the bodies at each time frame, their rotation, translation and scaling factor
are specified. The tool uses frame coherence when determines collision, i.e. it
reuses information about the state of the bodies from the previous time frame.

• Collision details in SOLID are obtained using acallbackfunction. Each time when
collision between a pair of bodies is detected (i.e. the bodies penetrate already),
some user-defined callback function is called. When collision is detected, the clos-
est pair of points of the objects at placements from the previous time frame is re-
ported by the callback function. Vector defined by these two points can serve as
approximation to the normal to the collision plane. This approach, however leads
to some difficulties when the objects move during the collision and continue to be
in the penetration for several time steps.

Vector defined by these two points can serve as approximation to the normal to the
collision plane.

5.4 Detailed Handling of Collision Response

Assume that the collision between the objectsA andB is detected. In order to find
the shortest separation vector~c (as defined in Section 3.2) we use a search algorithm.

The algorithm is implemented as two nested loops. In the external loop the length
for ~c is chosen. Initially a very small estimatedc0 is chosen1 so that it is negligible in
comparison with a typical penetration depth. The value ofci is incremented at each loop
iteration, so thatci = (1 + κ)ci−1. The value0.1 < κ < 0.4 should be small if high
accuracy is required.

There exist3× 3× 3 = 27 possible direction vectors(xm, ym, zm), where each of the
components can be -1, 0 and 1. The vector (0,0,0) is excluded from this set. All the
direction vectorsci0, ..., c

i
26 are normalized and then multiplied by the current length, i.e.

ci. As a result, the vectors~cim, 1 ≤ m ≤ 26 are obtained.
The figureB(~cim) isB displaced by~cim. P

A,B(~cim)
andP

B(~cim),A
are the closest points

between the bodiesA andB(~cim). The vector between the points is referred as~dim.
If there is at least one vector that makes the bodies disjoint in the set of vectors~cim, 1 ≤

m ≤ 26, the external loop of the algorithm stops. The internal loop should find the most
appropriate vector if several are available. We know that all~cim that made the bodies
disjoint are slightly longer than necessary. All these vectors can be shortened by some
distance. This distance is the length of projection of the vector~dim on ~cim. The length of
projection ispm = ~cim

~dim/| ~cim|, and them giving the largest projection should be chosen.

A1

A2

A3

B1

B2

B3

B1

BHC2 L
BHC3 L

BHC4 L

BHC5 L

PHBHC5 L,A L
PHA,B HC5 LL

PHBHC4 L,A LPHBHC3 L,A LPHBHC2 L,A L

S1 S2

S3

Figure 7: Computation of the shortest separation vector

The inner loop of the algorithm can be demonstrated graphically in the two-dimensional
case as in Figure 7. It shows the bodyA with verticesA1, A2, A3. The bodyB has ver-
ticesB1, B2, B3 as well as some other vertices that are currently ignored. The current
separation vector lengthci (in the following we skip the indexi) is chosen as|S1S2|, i.e.

1Here and in the rest of this section the superscript should be regarded as an index, not as an exponent
representing thepoweroperation.

the length of the vector fromS1 toS2. There are eight vectors~c1, ..., ~c8 of the same length.
In this demonstration just five of them will be discussed (~c1, ..., ~c5). Other vectors are cur-
rently ignored. These vectors (~c1, ..., ~c5) are not shown in the picture. Instead, the results
of the displacements of the bodyB according to these vectors are shown:B(c1), ..., B(c5).
These displaced bodies are shown with dashed lines. The collision detection algorithm
finds thatB(c1) intersectsA, but the other bodiesB(c2), B(c3), B(c4), B(c5) are disjoint
with A. For each disjoint object pair the collision detection algorithm finds the closest
points:

• ForB(c2) andA the closest points areP (B(c2), A) andA2 (vector~d2).

• ForB(c3) andA the closest points areP (B(c3), A) andA2 (vector~d3).

• ForB(c4) andA the closest points areP (B(c4), A) andA2 (vector~d4).

• ForB(c5) andA the closest points areP (B(c5), A) andP (A,B(c5)) (vector~d5).

The vectors~di are shown in the picture as thin solid lines. The longest of the vectors
~di is ~d5. Therefore the direction of the separation vector is~c5 = ~S1S2. The length of
the actual shortest separation vector is shorter than|S1S2|. The projection of~d5 on ~c5 is
subtracted from|S1S2|. The result is|S1S3|. This is the penetration depth used in the
computation of collision force.

6 Applications Using the Force-Based Model
This section presents examples of models using the force-based collision model in

Modelica.
The first examples use the MBS library but do not use any collision detection package.

The second example uses the MBS library, the collision detection tool SOLID, as well as
some gluing classes.

6.1 Pendulum Collision with an Obstacle

This pendulum is the same mechanical construct as the one described in Section 2.5,
Figure 2. For finding the magnitude of the force it uses the equation derived in Section
4.2. It is possible to choose the penalty coefficientK, which is stored in the variable
penalty in the code below, arbitrarily large:

— If K < 103 the collision appears too weak and the penetration is non-realistically
large.

— If 103 < K < 105 a soft collision occurs.
— If 105 < K < 1015 a hard collision occurs.
— If K > 1015 this makes the integrators unstable.
The desired restitution coefficient (variablee) almost matches the actual restitution

(variableeres). The computation error was(e− eres)/eres < 0.05.

model Pendulum
Inertial i;
RevoluteS R1(n={0,0,1},q(start=1));
BodyBase M1 (m=50,rCM={0,0.5,0});
Bar B (r={0,1,0});
ExtForce EF1 "collision force";
parameter Real penalty=50000;
parameter Real e=0.5 "desired restitution, 0<e<1";
parameter Real obstacle_x = 0.5 " x coordinate of obstacle";
Real depth "penetration depth";
Real depvel "penetration velocity";
Real k "velocity coefficient for penalty";
Real force_magnitude "magnitude of collision force";
output Real x "x of pendulum end";
output Real y "y of pendulum end";
output Real eres "resulting restitution coef" ;
output Real v0(start=9.999) "velocity at start of collision.";
// Need start value just to avoid zerodivision
output Real vout "velocity at the end of collision";

equation
connect(i.b, R1.a);
connect(R1.b, M1.a);
connect(R1.b, B.a);
connect(B.b, EF1.b);
x=B.r0b[1];
y=B.r0b[2];
depth = B.r0b[1]-obstacle_x; // The obstacle equation.
// B.r0b[1] is the x coordinate of the pendulum end.
depvel= -B.vb[1];
when (depth>0) then v0=depvel; end when;
when (depth<0) then vout=depvel; end when;
eres=vout/v0;
k=(1-e)/(e*v0); // approximation derived for typical k
force_magnitude=

if (depth>0) then (1 + k*depvel)*penalty*depth
else 0;

EF1.fb={force_magnitude,0,0};
end Pendulum;

6.2 Interfacing to a to Collision Detection Package

The Modelica model interfaces with a collision detection package through function
calls. The mechanical simulation based on MBS sends the current positions of all bodies
to the collision package (CP) and receives vectors of forces and torques that occur due to
collisions.

Since the number of bodies can be large, and the data should be send to the collision
package at once, and received at once, all the variables needed are packed into the two-
dimensional arrayscollisionInput andcollisionOutput .

The functiondoCollide accepts the arraycollisionInput as an argument and
returns the arraycollisionOutput as a result.

The example below demonstrates a purely elastic collision, but can also be extended
for different restitution coefficient values. Also, the example demonstrates free flying
bodies, but it can be extended for arbitrary constructions that use MBS, consisting of
bodies, joints and additional external forces and torques.

function doCollide "Function to be called to obtain the collision force"
input Integer bodies "number of bodies";
input Real collisionInput[bodies,27] "position and other data";
output Real collisionOutput[bodies,6] "forces and torques";

external
end doCollide;

model BodyME "Body that participates in collision and can be visualized"
extends MbsOneCutA;
parameter Real id;
parameter Real r[3]={0, 0, 0} "Vector from cut A to center of mass [m]";
parameter Real mass=0 "Mass of bar [kg]";
parameter Real I11=0 "(1,1) element of inertia tensor [kgmˆ2]";
// other inertial tensor elements are skipped for brevity
parameter Real r0[3]={0, 0, 0} "Origin of visual object.";
parameter Real nx[3]={1, 0, 0} "Vector in x direction.";
parameter Real ny[3]={0, 1, 0} "Vector in y direction.";
parameter Real Material[4]={1, 0, 0, 0.5} "Material properties";
parameter Real parmStlIndex=0 "Index of STL file";
parameter Real noCollision=0 "0 if the body participates in collisions";
Real collisionInput[27] "position and other data";
Real collisionOutput[6] "force and torque";
output Real StlIndex "Index of STL file";
BodyME2 ME2(r=r,mass=mass,

II=[I11, I12, I13; I12, I22, I23; I13, I23, I33])
"A help class - wrapper for physical body model";

MbsOneCutB collResp;
VisualMbsObject B(r0=r0,nx=nx,ny=ny,Material=Material);

equation
connect(a, ME2.a);
connect(a, collResp.b);
connect(a, B.a);
StlIndex = parmStlIndex;
B.fa = {0, 0, 0};
B.ta = {0, 0, 0};
collisionInput=cat(1, {id, B.shape, B.Form, B.extra, parmStlIndex, noCollision},

B.size, B.rxvisobj, B.ryvisobj, B.rvisobj, Sa[1,:], Sa[2,:], Sa[3,:]);
collisionOutput=cat(1, collResp.fb, collResp.tb);

end BodyME;

model minibox "An MBS construction containing a single body"
// This construction can be extended and contain
// more complex model consisting of bodies and joints

parameter Real nx[3]={1, 0, 0};
parameter Real ny[3]={0, 1, 0};
parameter Real id;
Real ac[24]; Real th[6];
MbsCutA a(across=ac, through=th);
SubInertial I(nx=nx, ny=ny);
BodyME box_1(r={0, 0, 0},I11=0.13,I22=0.13,I33=0.13,I12=0,I23=0,I13=0,mass=1,

r0={0, 0, 0},nx={1, 0, 0},ny={0, 1, 0},Material={0.8, 1.0, 0.8, 1.0},
parmStlIndex=20,id=id);

equation
connect(a, I.a);
connect(I.b, box_1.a);

end minibox;

model IntegratedBox "A glue class representing a free flying element bx"
extends MbsOneCutA;
parameter Real id;
minibox bx(id=id);
FreeCardan2S free;

equation
connect(a, free.a);
connect(free.b, bx.a);

end IntegratedBox;

model world
IntegratedBox ib1(id=1) "free flying box no. 1";
IntegratedBox ib2(id=2) "free flying box no. 2";
IntegratedBox ib3(id=3) "free flying box no. 3";
IntegratedBox ib4(id=4) "free flying box no. 4";
Inertial I(g=0) "The roor of the MBS tree";
parameter Integer bodies=4;
Real wholeInput [bodies,27];
Real wholeOutput [bodies,6];

equation
connect(I.b, ib1.a) ;
connect(I.b, ib2.a) ;
connect(I.b, ib3.a) ;
connect(I.b, ib4.a) ;
ib1.bx.box_1.collisionInput=wholeInput[1,:];
ib2.bx.box_1.collisionInput=wholeInput[2,:];
ib3.bx.box_1.collisionInput=wholeInput[3,:];
ib4.bx.box_1.collisionInput=wholeInput[4,:];
ib1.bx.box_1.collisionOutput=wholeOutput[1,:];
ib2.bx.box_1.collisionOutput=wholeOutput[2,:];
ib3.bx.box_1.collisionOutput=wholeOutput[3,:];
ib4.bx.box_1.collisionOutput=wholeOutput[4,:];
wholeOutput=doCollide(bodies,time,wholeInput);

end world;

Figure 8 demonstrates dynamic visualization of collision between four free flying
cubes. The lines represent the trajectories before and after the collision. Initially two
boxes move towards the zero point, and all four bodies are separated after the collision
occurs.

Figure 8: Dynamic visualization of collision between four free flying cubes. The lines
represent the trajectories before and after the collision.

7 Conclusion
In this report we attempt to find ways to connect MBS-based models written in Mod-

elica with collision detection and response routines. We also derive the equations and the
coefficients that can be used as collision response functions.

As the first step in this direction different collision response models were identified
and experiments with Modelica simulations were performed. We demonstrate that an im-
pulse based approach for non-trivial models requires a new library that includes equations
for propagation of impulses into joints. This new library can become a topic for new re-
search and experimentation. The force-based (penalty) approach can work with any MBS
models, however the performance and stability should be further studied.

The experiments describe a collision of a point mass and a static obstacle. Therefore
we do not prove thatF is appropriate for collisions in all cases. However it can serve as
an approximation of the force in the broader set of cases.

Our currently used force model is continuous, but actually not differentiable at the
time of the start and the end of collision. This may cause problems for the ODE solvers
because these require that all equations are differentiable. In future models with differen-
tiable force should be derived and used for simulation.

8 Acknowledgments
The Modelica definition has been developed by the Eurosim Technical Committee 1

(Modelica Design Group)[13] under the leadership of Hilding Elmqvist (Dynasim AB,
Lund, Sweden) and Martin Otter (DLR, Germany). The Multibody Simulation Library
has been developed by Martin Otter. The author thanks Dag Fritzson for useful discus-
sions about the ODE.

References
[1] 3D Systems,Stereo Lithography Interface Specification, 3D Systems Inc., Valencia,

CA 91355. Available via http://www.vr.clemson.edu/credo/rp.html.

[2] David Baraff, Dynamic Simulation of Non-Penetrating Rigid Bodies, Ph.D. the-
sis, Department of Computer Science, Cornell University, 1992, Available via
http://www.cs.cmu.edu/ baraff/

[3] Gino van den Bergen,SOLID, Software Library for Interference Detection,
http://www.win.tue.nl/cs/tt/gino/solid

[4] Gino van den Bergen, personal communication, November, 1999.

[5] Dag Fritzson, Peter Fritzson, Patrik Nordling, Tommy Persson, Rolling Bearing Sim-
ulation on MIMD Computers,International Journal of Supercomp. Appl. and High
Performance Computing, 11(4), 1997.

[6] Lars Johansson, Anders Klarbring, Study of Frictional Impact Using a Non-smooth
Equations Solver, to appear inJournal of Applied Mechanics, 2000.

[7] Ming Lin and Dinesh Manocha,Collision Detection Packages RAPID, PQP, V-
COLLIDE, I-COLLIDE, http://www.cs.unc.edu/ geom/collisioncode.html

[8] Ming Lin and Stefan Gottschalk. Collision Detection between Geometric Models: A
Survey.In Proceedings of IMA Conference on Mathematics of Surfaces 1998.Avail-
able via http://www.cs.unc.edu/ dm/collision.html

[9] Brian Mirtich, V-Clip Collision Detection Library , available via
http://www.merl.com/projects/vclip/

[10] Brian Mirtich. Impulse-based Simulation of Rigid Bodies, InSymposium on Inter-
active 3D Graphics, ACM Press, 1995.

[11] Brian Mirtich. Hybrid Simulation: Combining Constraints and Impulses, inPro-
ceedings of the 1st Workshop on Simulation and Interaction in Virtual Environments,
ACM Press, July 1995, Available via http://www.merl.com/people/mirtich/

[12] Brian Mirtich, Impulse-based Dynamic Simulation of Rigid Body Systems, Ph.D.
thesis, University of California, Berkeley, December 1996.

[13] Modelica Design Group,Modelica WWW site, http://www.modelica.org

[14] Martin Otter, Hilding Elmqvist and Franc¸ois E. Cellier, Modeling of Multibody Sys-
tems with the Object-Oriented Modeling Language Dymola,Nonlinear Dynamics,
9:91-112, 1996, Kluwer Academic Publishers.

[15] Jianping Pang, Newton’s Method for B-Differentiable Equations,Mathematics of
Operation Reserach, Vol. 15, pp. 311-341.

[16] Friedrich Pfeiffer and Christoph Glocker,Multibody Dynamics With Unualteral con-
tacts, Wiley Series in Nonlinear Science, 1996.

[17] Andrew Witkin and David Baraff, Physically Based Modeling: Prin-
ciples and Practice(Online Siggraph ’97 Course notes). Available as
http://www.cs.cmu.edu/ baraff/sigcourse.

[18] Wolfram Research,Mathematica 4.0, Wolfram Research, 1999.

[19] Peng Zhang,Physically Realistic Simulation of Rigid Bodies, Thesis, De-
partment of Computer Science, Tulane University, 1996, Available via
http://www.eecs.tulane.edu/www/Zhang/

[20] Vadim Engelson. Integration of Collision Detection with the Multibody System Li-
brary in Modelica. InVadim Engelson. Tools for Design, Interactive Simulation, and
Visualization of Object-Oriented Models in Scientific Computing, Dissertation No
627. Department of Computer and Information Science, Linkping University, May
2000.

