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Abstract

A dynamic mechanistic model of a hydrometallurgical leaching reactor has
been developed, on the basis of the conventional conservation laws and the
population balance equation. The resulting system, composed of 1 integro-
differential equation, 10 implicit ODEs and 2 integral equations, has been
reduced to a system of implicit ODEs, by discretization in the particle size
space. The discretized model has been implemented inMatlab

R°
to simulate

the dynamics of the reactor. The simulation results are satisfactory and show
agreement with the experimental observations published in the literature.
Keywords: leaching, dynamic model, Population balance, ferrosilicon,

silicon, discretization

1 Introduction
Silicon (Si) is one of the most important technical materials due to its properties
as semiconductor. Silicon devices, i.e. transistors and integrated circuits, are the
basis of modern electronics. Furthermore, silicon is widely used in metallurgical
applications, both as a constituent of various alloys and as an oxidizer in steelmaking.
It is also basic in the silicone industry, which is built around compounds with long
oxygen-silicon chain .
Elkem AS is the largest manufacturer of Si metal in the world, with a global

market share of 20% in 1999 (Elkem 2000). Elkem Bremanger at Svelgen (Norway)
produces Si metal via a patented hydrometallurgical leaching process called the
Silgrain

R°
process. Hydrometallurgical leaching belongs to the category of reactive

particulate processes, which are inherently more difficult to describe than reactive
systems comprised of one or more bulk phases, due to the fact that particulate
assemblages are invariably polydispersed in nature.
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It is of industrial interest to develop models of product quality. In the case
studied here, the product quality is strongly related to the property distributions.
The main objective of this paper is to develop and test a dynamic model of the main
leaching reactor of a Silgrain-type leaching process. Based on the application of the
conventional conservation law for the continuous properties and of the population
balance equation for the distributed properties, a model is formulated in this paper
and a solution method for the model is proposed.
The large dimensions of hydrometallurgical reactors and the high added value

of the product are two important reasons to minimize the need of experimentation
regarding the verification of the model. In this sense, the use of simulation is ad-
vantegeous, and can reduce considerably the costs and time necessary to test such a
model. For these reasons, a simulation study has been used in this paper to test the
model and compare it with the results available in the literature about this type of
hydrometallurgical leaching process.
The paper is organized as follows: In section 2, we give a brief overview of the

leaching of ferrosilicon, in section 3 a literature review of leaching models is given,
section 4 shows how the model is developed, section 5 discusses how to solve the
resulting model, section 6 gives some simulation results, and finally some conclusions
are drawn in section 7.

2 Hydrometallurgical leaching of ferrosilicon
Leaching is the dissolution of a soluble constituent from a solid by means of a solvent.
Dissolution can be a pure physical process, physical leaching, or can be chemically
promoted by the reaction of the solvent with one of the solid constituents to produce
a soluble product, chemical leaching. In the silicon industry, chemical leaching is
used to purify silicon by dissolving the unwanted impurities with an appropriate
solvent. Several industrial processes are available, based on the use of one of the
following inorganic acids as solvents: hydrochloric acid, sulfuric acid, hydrofluoric
acid, nitric acid or aqua regia. Of all the available industrial hydrometallurgical
leaching processes, Margarido et al. (1997) selected the Silgrain

R°
Process, based

on leaching of 90% ferrosilicon (FeSi) alloys (Si ' 90%) with an acidic solution of
iron chloride (III) (FeCl3) and hydrochloric acid (HCl), as the most efficient. The
main advantages of this process are: the metallurgical grade silicon can contain
a larger amount of impurities than other acid-leaching processes, and a relatively
large particle size can be used, thus reducing considerably the cost of raw material
grinding.
Aas (1971) described the process of hydrometallurgical leaching of ferrosilicon in

detail. Silicon metal is produced by leaching lumps of 90− 94% FeSi in a hot acidic
solution of ferric chloride and hydrochloric acid. Ferrosilicon consists of rather pure
Si-metal dendrites among which several types of intermetallic phases, composed
mainly of Fe, Ca, Al and Ti, are encountered. The dissolution of impurities is



assumed to occur according to the following reduction-oxidation equations (Aas
1971), (Margarido, Martins, Figueiredo & Bastos 1993):

Fe+ 2FeCl3 −→ 3FeCl2 (1)

Fe+ 2HCl −→ FeCl2 +H2 (2)

Al+ 3FeCl3 −→ AlCl3 + 3FeCl2 (3)

Al+ 3HCl −→ AlCl3 +
3

2
H2 (4)

Ca+ 2FeCl3 −→ CaCl2 + 2FeCl2 (5)

Ca+ 2HCl −→ CaCl2 +H2. (6)

One feature that characterizes the Silgrain
R°
Process and distinguishes it from

other hydrometallurgical leaching processes is the rapid disintegration of FeSi into
small grains during the reaction (Aas 1971).

3 Review of hydrometallurgical leaching models
Hydrometallurgical leaching processes are reactive particulate processes, in which an
assembly of particles, the dispersed phase, reacts with the environment sorrounding
the particles, the continuous phase. Reactive particulate systems are inherently
more difficult to describe than reactive systems comprised of one or more bulk
phases. First of all, since more than one phase is present, the transfer of material
from phase to phase must be considered, giving rise to complex rate equations that
incorporate mass transfer terms in addition to the usual chemical kinetics terms.
However, the main difficulty regarding reactive particulate processes arises from
the fact that particulate assemblages are invariably polydispersed in nature, i.e.
the particles being processed have a broad distribution of properties such as size,
mineralogical composition, etc (Herbst & Asihene 1993). Hence, a mathematical
model of a leaching reactor should account for the influence of property distributions
on the behaviour of the assembly of particles.
Attention has been paid to the modelling and simulation of reactive particulate

processes in hydrometallurgical applications in the last decades. The mathematical
models found in the references can be classified into two categories: General het-
erogeneous models, and models accounting for the special nature of the particulate
material.
General heterogeneous models represent the early approaches to the quantifi-

cation of behaviour of particulate systems. These models ignore the particulate
nature of the system and the distribution of material properties is suppressed by
representing the entire assemblage of particles by the average value of the proper-
ties. General heterogeneous models were first developed for catalytic heterogeneous
reactions, and later on applied also for non-catalytic heterogeneous reactors, see e.g.



(Froment & Bischoff 1990), (Kunii & Levenspiel 1991) and (Levenspiel 1972). They
can be divided into two categories: fixed-bed reactor models and fluid-bed reactor
models. The former are used when the reactor is operated at low flow velocities,
so the bed of solids remain still, whereas the latter are applied when the operating
fluid velocity is high enough to cause agitation and displacement of the particles in
the solid bed.
More rigorous approaches to modelling reactive particulate processes, accounting

for the distributed nature of particle properties, did not emerge until the early 1960’s.
Three rigorous models have been widely used: the segregated flow model, themultiple
convolution integral and the Population Balance (PB). The segregated flow model
assumes that each particle in a steady-state flow leaching reactor behaves as a tiny
batch reactor (Dixon (1995, 1996)). Hence, a probability integral is solved for the
expected value of the fraction of solids unreacted with respect to mass-weighted
distributions of residence time and particle size. The multiple convolution integral
model, developed by Dixon (1995, 1996), is an extension of the segregated model
to multistage leaching reactors. The population balance (PB) model is based on the
conservation law of total population entities, which represent the changes in particle
property distributions, see e.g. (Himmelblau & Bischoff 1968), (Randolph 1964) and
(Randolph & Larson 1988). Originally derived for the study of crystal nucleation
and growth (Randolph 1964) (Hulburt & Katz 1964), the population balance has
since then proven to be a powerful tool for quantifying the dynamics of many varied
particle technologies such as comminution, agglomeration, liquid-liquid extraction,
biochemical processes, emulsion polymerization, etc. Randolph and Larson (1988)
and Ramkrishna (1985) present a complete review of the application of population
balances to problems in chemical engineering. This approach was first applied to
hydrometallurgical leaching in single steady-state reactors by Herbst (1971).
Due to the complexity of the mathematical description of reactive particulate

models, most of the research has dealt with steady-state models (Herbst & Asihene
1993) (Crundwell & Bryson 1992). Moreover, two of the three rigorous approaches,
the segregated flow model and themultiple convolution integral, are limited to steady-
state conditions. Only the population balance (PB) model can represent transient
behaviour. Rubisov and Papangelakis (1995, 1996a, 1996b) were the first to succes-
fully model the transient behaviour of CSTRs with reactive particulates.

4 Model Formulation

4.1 Assumptions
The population balance model is the framework that will be used here to model
the dynamics of a FeSi leaching reactor, since the other rigorous approaches are
only applicable to steady-state conditions and can not handle the disintegration of
particles.



Figure 1: Schematic depiction of the hydrometallurgical leaching model

One isothermal single-stage reactor is assumed. The type of contact between
the disperse and the continuous phase is assumed to be complete-mix. According
to Aas a large fraction of the working volume in the reactor is in a partly fluidized
state (Aas 1971). Therefore, the assumption of complete mixing is reasonable.
The model should describe the two main events taking place in the reactor: the

chemical dissolution of impurities and the disintegration of the particles. Particle
size is chosen as the distributed property that characterizes the disperse phase, since
it affects both the chemical reaction and the disintegration processes.
Consequently, the inputs and outputs of the model are the particle size dis-

tribution (PSD), the ferrosilicon composition, the acid liquor composition and the
fraction of solids, at the inlet and outlet, respectively, as depicted in Figure 1.

4.2 The population balance equation
In 1964, two groups of researchers, Hulburt & Katz (1964) and Randolph (1964),
observed that many problems involving change in particulate systems could not be
handled within the framework of the conventional conservation equations. These
researchers recognized that particulate materials are unique in that the dispersed
phase is made up of a countable number of entities, and these entities posess a
distribution of properties. They proposed the use of an equation for the continuity
of particulate numbers, termed population balance, as a basis for describing the
behaviour of such systems. This number balance is developed from the general
conservation equation

accumulation = input− output+ net generation

applied to particles having a specified set of properties. In the population balance,
input and output terms represent changes in the number of particles in the specified
property interval due to convective flow, while the net generation term accounts
for particles entering and leaving the specified property intervals as a result of con-
tinuous processes such as chemical reaction, or discrete generation such as particle
breakage. Similarly to the traditional conservation laws, the authors developed two



forms of population balance: a microscopic PB, which accounts for the spatial de-
pendence of the particle property of interest, and a macroscopic PB, which accounts
for average values of the properties through the reactor volume.
The reactor under study is well-mixed, hence the macroscopic form of the PB

can be used. For a rigorous derivation of the macroscopic population balance model,
the reader is referred to the original work of the authors, (Hulburt & Katz 1964) and
(Randolph 1964), and to references (Himmelblau & Bischoff 1968) and (Ramkrishna
1985). The population balance is based on a number-density distribution function
of the particle properties of interest. In the case under study only one distributed
property, the particle diameter, is considered. In leaching applications it is common
to write the balance in terms of the number-density distribution function per unit
working volume, ψ(Dp, t) (m

−4). Hence, ψ(Dp, t) dDp represents the number of
particles in the diameter range [Dp, Dp + dDp] per unit volume. The macroscopic
population balance can be written as:

1
V (t)

∂(V (t)ψ(Dp,t))
∂t

= 1
V (t)

(Qin(t)ψin(Dp, t)−Q(t)ψ(Dp, t))− ∂
∂Dp

³
dDp
dt

ψ(Dp, t)
´
+B−D.

(7)
The left hand side of the PB is the accumulation term, where V (t) represents

the working volume of the reactor (m3), which is a function of time. The first two
terms of the right hand side of the PB represent the input and output by convective
transport, where Qin(t) and Q(t) are the slurry flow rate (m3 /min) at the inlet
and outlet, respectively. The generation term consists of two parts: a continuous
dissapearance of particles and a discrete generation of particles. These two forms
are discussed in more detail below.

1. The continuous disappearance of particles in a certain particle size range is
the result of chemical dissolution of impurities:

− ∂

∂Dp

µ
dDp
dt

ψ(Dp, t)

¶
, (8)

where dDp/dt is the rate of particle shrinkage due to chemical dissolution. It
can be demonstrated that

dDp
dt

= − 2
ρp
(MFe rFe +MAl rAl +MCa rCa) , (9)

where ρp is the particle density (kg /m
3);MMe is the molecular weight of metal-

lic impurity Me (Fe, Al or Ca) (kg /mol); and rMe is the rate of dissolution of
metallic impurity Me (mol /m2min). Margarido et al. (1993) and Martins &
Margarido (1996) have thoroughly studied the kinetics of acid leaching of FeSi
alloys. They succesfully fitted kinetic data to a model called the crackling
core model, first developed by Park and Levenspiel (1975), which accounts
for particle disintegration. The data fitting indicates that the limiting stage



Table 1: Apparent kinetic parameters for impurities’ solubilization (I).
Element k1 x 109 (m /min) k2 x 105 (m /min)
Fe 61.67 2.167
Al -1.167 2.667
Ca -28.5 16.17

is the chemical reaction in the grains (Margarido et al. 1993), (Martins &
Margarido 1996). Hence, the rate of dissolution can be expressed as:

−rMe = cMe (k1MeCFeCl3 + k2MeCHCl) , (10)

where cMe is the stoichiometric coefficient of Me in equations 1 to 6; k1Me
and k2Me are the reaction rate coefficients associated with the leaching action
of FeCl3 and HCl, respectively (m /min); and CFeCl3 and CHCl are the con-
centration of FeCl3 and HCl in the reactor, respectively. Table 1 shows the
values of the reaction rate coefficients obtained by Margarido et al. (1993).
Substituting equations 9 and 10 into equation 8, one obtains

−∂ψ(Dp, t)

∂Dp

2

ρp

X
Me

MMecMe (k1MeCFeCl3 + k2MeCHCl) . (11)

2. The discrete generation of particles in a certain particle diameter range is the
result of the disintegration process. Such an event is typically represented
by the particle birth and particle death rates, B and D, respectively. No
references have been found of the application of the PB to leaching processes
where the particles experienced disintegration. However, numerous references
have been found of the application of PB that include the birth and death
rate functions in other fields of particulate processing such as granulation
(Kapur 1995), comminution (Herbst & Asihene 1993), (Ramkrishna 1985) and
emulsion dispersion (Chen, Prüss & Warbecke 1998). It is important to note
that although these particulate processes differ considerably, they model the
birth and death rate terms in an identical way, as follows:

B −D =
Z ∞

Dp

b(Dp, y) a(y) η(y)ψ(y, t) dy − a(Dp)ψ(Dp, t) (12)

where a(Dp) is the particle breakup frequency function (min −1); b(Dp, y) is the
probability distribution function of daughter particles of size Dp by breakage
of a particle of size y; and η(y) is the average number of daughter particles
by breakage of one particle of size y. In accordance to its definition, a(Dp)
is the inverse of the disintegration time in the crackling core model. In this
paper, we propose a linear dependence of the disintegration time with the



particle diameter, which means that the particle breakup frequency function
corresponding to those particles larger than the average grain size is

a(Dp) =
ka
Dp
, (13)

where ka has a value of 1.07 10−3 m /min, a value that has been estimated
from the kinetic data published by Margarido et al. (1993).

In this paper, the probability distribution function of daughter particles is
assumed to follow a Gaudin-Mellon distribution

b(Dp, y) =
m

y

µ
1− Dp

y

¶m−1
. (14)

where m has a value of 17.8, value that has been estimated from the kinetic
data published by Margarido et al. (1993). A Gaudin-Mellon distribution
has been selected because this type of distribution is commonly used to fit
particle size distributions obtained from comminution processes (Randolph &
Larson 1988), and due to its statistical properties: is normalized in the range
[0, y], which is precisely the range of interest.

Finally, the average number of daughter particles, by definition, is the ratio
between the volume of the mother particle and the average volume of daughter
particles

η(y) =
y3
R y
0
b(Dp, y) dDpR y

0
D3
p b(Dp, y) dDp

=
1

3!
(m+ 1) (m+ 2) (m+ 3) . (15)

Substituting equations 13, 14 and 15 into 12, the discrete generation of parti-
cles can be rewritten as

B−D = kam (m+ 1) (m+ 2) (m+ 3)

6

Z ∞

Dp

1

y2

µ
1− Dp

y

¶m−1
ψ(y, t) dy− ka

Dp
ψ(y, t).

(16)

Substituting equations 11 and 16 in equation 7, the population balance is rewrit-
ten as follows (the dependence of variables with time has been obviated for the sake
of simplicity):

1

V

∂(V ψ (Dp))

∂t
=

1

V
(Qinψin(Dp)−Qψ(Dp))− ka

Dp
ψ(Dp)

+
kam (m+ 1) (m+ 2) (m+ 3)

6

Z ∞

Dp

1

y2

µ
1− Dp

y

¶m−1
ψ(y) dy

−∂ψ(Dp)

∂Dp

2

ρp

X
Me

(MMe (cMek1MeCFeCl3 + k2MeCHCl)) , (17)

which is a partial integro-differential equation.



4.3 Mass balances for the solid phase
The chemical composition of the particles has been assumed to be homogeneous and
the reactor is assumed to be well-mixed. Therefore, the conventional macroscopic
mass balance can be used
d (V (t)wMe(t) g(t))

dt
= wMe,in(t)Qin(t) gin(t)− wMe(t)Q(t) g(t) + MMe

ρp
rMe s(t)V (t),

(18)
where wMe and wMe , in are the mass fractions of metallic impurity Me in the reactor
and at the inlet, respectively; gin(t) is the volumetric fraction of solids at the inlet
(m3 /m3); and g(t) is the volumetric fraction of solids in the reactor, which is related
to ψ(Dp, t) by

g(t) =
π

6

Z Dpmax

0

D3
p ψ(Dp, t) dDp, (19)

and s(t) is the external surface of particles per unit volume (m−1), which is related
to ψ(Dp, t) by

s(t) = π

Z Dpmax

0

D2
p ψ(Dp, t) dDp. (20)

For the inerts (basically Si), the mass balance is identical to equation 18, except
that the generation term is zero.

4.4 Mass balances for the acid reactants and soluble products
Since the reactor is well-mixed, the macroscopic mass balance can be used for the
acid reactants and soluble products

d (Csc(t)V (t) (1− g(t)))
dt

= Csc,in(t)Qin(t) (1−gin(t))−Csc(t)Q(t) (1−g(t))+rsc s(t)V (t)
(21)

where Csc(t) represents the molar concentration of the soluble compound (FeCl3,
HCl, FeCl2, AlCl3 or CaCl2) in the reactor (mol /m3);Csc,in(t) is the molar concen-
tration of soluble compound at the inlet of the reactor; (1− g(t)) is the volumetric
fraction of leaching solution; and rsc is the reaction rate of the soluble compound.
The reaction rate of acid reactants and soluble compounds is related to the reac-
tion rates of metal impurities by the stochiometry of reactions 1 to 6, thus they are
functions of the reaction rate coefficients k1Me and k2Me, and of the concentration
of FeCl3 and HCl in the reactor, CFeCl3 and CHCl.

4.5 Overall mass balance
The overall mass balance for the reactor completes the model of the reactor,

d(((ρp−ρf) g(t)+ρf)V (t))
dt

=
¡¡
ρp − ρf

¢
gin(t) + ρf

¢
Qin(t)

− ¡¡ρp − ρf
¢
g(t) + ρf

¢
Q(t)−MH2 rH2s(t)V (t),(22)



Table 2: Model of the hydrometallurgical leaching reactor.
Population Balance Model

1
V

∂(V ψ)
∂t

= 1
V
(Qinψin −Qψ)− ∂ψ

∂Dp
2
ρp

P
MMecMe (k1MeCFeCl3 + k2MeCHCl)

+kam (m+1)(m+2)(m+3)
6

R∞
Dp

1
y2

³
1− Dp

y

´m−1
ψ(y, t) dy − ka

Dp
ψ(Dp, t)

Mass balances for the solid reactants
d(V wMe g)

dt
= wMe,inQin gin − wMeQg + MMe

ρp
cMe (k1MeCFeCl3 + k2MeCHCl) s V

(where Me = Fe,Al or Ca)
d(V winerts g)

dt
= winerts,inQin gin − winertsQg

g =
π

6

R Dpmax
0

D3
pψ(Dp, t) dDp

s = π
R Dpmax
0

D2
pψ(Dp, t) dDp

Mass balances for the continuous phase
d(CscV (1−g))

dt
= Csc,inQin (1− gin)− CscQ (1− g) + rsc s V

where sc = FeCl3,HCl,FeCl2,AlCl3 or CaCl2
and rsc is substituted by the corresponding rate expressions

Overall mass balance
d(((ρp−ρf) g+ρf)V )

dt
=
¡¡
ρp − ρf

¢
gin + ρf

¢
Qin −

¡¡
ρp − ρf

¢
g + ρf

¢
Q−MH2 rH2s V

where ρf is the fluid density (kg /m
3);the termMH2 rH2s(t)V (t) represents the outlet

flow of gas from the reactor. This flow results from the desorption of the hydrogen
produced during reaction. Since the operation temperature is high (100− 110 ◦C)
(Aas 1971), the assumption of complete desorption of produced hydrogen is rea-
sonable. It must be noted that at these temperatures some evaporation, mainly of
water and some HCl, takes place in the reactor. However, evaporation is neglected
since there is a lack of data about evaporation rates; its effect is expected to be
small and basically affecting the working volume, which is not the variable of most
interest of the model.

4.6 Overview of the model
Table 2 summarizes the model of the acid leaching of FeSi. The model is dynamic and
it accounts both for the disintegration of the particles and the chemical dissolution
of impurities. The initial boundary conditions necessary to solve the model are listed
in table 3.

5 Solution of the model
The system of mathematical equations describing the dynamic behaviour of the
leaching reactor under study involves 1 partial integro-differential equation, 10 non-



Table 3: Initial and boundary conditions of the leaching model.
Initial and boundary conditions
t = 0; ψ(Dp) = ψ0(Dp)
t = 0; wFe = wFe,0
t = 0; wAl = wAl,0
t = 0; wCa = wCa,0
t = 0; winerts = winerts,0
t = 0; CFeCl3 = CFeCl3,0
t = 0; CHCl = CHCl,0
t = 0; CFeCl2 = CFeCl2
t = 0; CAlCl3 = CAlCl3,0
t = 0; CCaCl2 = CCaCl2,0
Dp = Dp,max; ψ(Dp, t) = 0

linear implicit 1 ordinary differential equations (ODE’s) and 2 integral equations.
The method of moments, as developed by Hulburt & Katz (1964), is the most
widely used method to reduce integro-differential equations into a closed set of ordi-
nary equations, (Ramkrishna 1985) and (Chiu & Christofides 1999), by generating
moment equations where the moments are defined by

µn(t) =

Z Dpmax

0

Dn
pψ(Dp, t) dDp. (23)

This transformation applied to the PB of the system under study, leads to terms
that do not reduce to moments. Therefore, the resulting moment equations do not
constitute a closed set of equations, which makes this method unsuitable.
Two other analytical solution methods, multiple Laplace transforms and the

method of characteristics in combination with sucessive substitution, have been
used in certain situations to solve integro-differential equations (Ramkrishna 1985),
but are not suitable in the case under study either. Hence, the system requires
developing a method of numerical integration.
The nonlinear and distributed nature of PB has motivated extensive research on

the development of efficient numerical methods for the accurate computation of the
solution. An excellent review of the results of these research is found in (Ramkrishna
1985). Examples of numerical solution methods proposed in the literature are: the
method of weighted residuals , the method of self-preserving distributions, Monte
Carlo simulation techniques, the size interval-by-size marching method (Kapur 1995)
and discretization via fixed/moving pivot techniques. Of all, the methods based on
discretization of the continuous PB are reported to be the most attractive from the
computational point of view (Kumar & Ramkrishna 1996a).

1The term ODE’s (or explicit ODE’s) is used when each ordinary differential equation contains
only one derivative. However, if more than one derivative appears in a given ordinary differential
equation, then the term implicit ODE’s should be used to refer to it.



Discretization techniques aim at the formulation of PB in discrete particle size
space. This is done by integrating the continuous PB equation over a discrete size
interval, say Dp,i to Dp,i+1,Z Dp,i+1

Dp,i

1
V

∂(V ψ)
∂t
dDp =

Z Dp,i+1

Dp,i

1
V
(Qinψin −Qψ) dDp −

Z Dp,i+1

Dp,i

∂
∂Dp

³
dDp
dt

ψ
´
dDp

+

Z Dp,i+1

Dp,i

Z Dp,max

Dp

b(Dp, y) a(y)ψ(y, t) dy dDp

−
Z Dp,i+1

Dp,i

a(Dp)ψ(Dp, t) dDp, (24)

where the discrete particle size distribution, φi(t) is given by

φi(t) =

Z Dp,i+1

Dp,i

ψ(Dp, t)dDp, (25)

and the number of intervals used to represent the total population of particles is N .
Thus, i = 1, 2, ...N. The various discretization methods differ in the way of relating
the continuous and discrete particle-size density distribution, ψ(Dp, t) and φi(t).
The main disadvantage of discretization methods is that the discretized model

may not be consistent with the number and mass conservation laws, or any other
integral property of interest associated to the entire population. Often, the accuracy
of the solutions is improved by using finer discretization grids, but incurring in a
very high computational costs. The method proposed by Kumar and Ramkrishna
(1996a, 1996b, 1997) improves considerably the effectiveness of discretization. They
propose that the discrete equations are internally consistent with regard to the de-
sired moments of interest of the distribution, thus ensuring the preservation of the
quantities of interest, while relaxing the accuracy of other less important quanti-
ties. Their first method, the fixed pivot technique, showed very good agreement
with the analytical solution of the PB equation for the case of particle breakup,
but overpredicted the number densities for the largest particles for the case of si-
multaneous breakup and aggregation of particles (Kumar & Ramkrishna 1996a).
This error was overcome by using a varying pivotal size instead of a fixed pivot
(Kumar & Ramkrishna 1996b). Finally, the moving pivot technique was succesfully
applied to the case of nucleation, growth and aggregation of particles (Kumar &
Ramkrishna 1997). Since the case under study involves particle shrinking by chem-
ical dissolution and particle breakup by disintegration, the moving pivot technique
seems to be the most suitable discretization technique.
The numerical technique divides the entire size range into small sections. The

size range contained in between two sizes Dp,i and Dp,i+1 is called the ith section.
The particle population in this range is represented by a size xi, such as Dp,i <
xi < Dp,i+1. This technique allows for the use of a general grid, for example, fine
in some ranges and coarse elsewhere. The particle population is assumed to be



concentrated at representative sizes, xi’s, having a zero value for other sizes. Hence,
the continuous and the discrete particle size density distribution, ψ(Dp, t) and φi(t) ,
are related as follows

ψ(Dp, t) =
NX
i=1

φi(t) δ(Dp − xi) (26)

where δ(Dp − xi) is the Delta Dirac function. Hence, this is in essence a special
application of the method of weighted residuals.
Since the particle populations in various size ranges are assumed to exist only at

corresponding representative sizes, xi’s, breakage of particles of these sizes can result
in the formation of new particles which do not match with any of the representa-
tive sizes. When such a situation occurs, the particle is assigned to the adjoining
representative size such that two prechosen properties of interest are preserved.
The formulation of the set of equations is cumbersome, so it is not presented

here. The reader is referred to the original work by Kumar and Ramkrishna (1996a,
1996b, 1997) for details about the procedure. The discrete population balance is
represented by 2N implicit ODEs,

dφi(t)

dt
+

φi(t)

V (t)

dV (t)

dt
=

1

V (t)
Qin(t)

Z Dp,i+1

Dp,i

ψin(Dp, t) dDp −
1

V (t)
Q(t)φi(t)

+
NX
k>i

ni,k ak ηk φk(t) − aiφi(t) (27)

dxi
dt
=
dDp
dt

¯̄̄̄
Dp=xi

(28)

where ai is the particle breakup function a (Dp) evaluated at the representative
diameter xi; ηk is the average number of daughter particles corresponding to a
mother particle of size xk; and ni,k results from the condition of preservation of
number (zero order moment of the distribution) and mass (the third moment of the
distribution) balances during particle breakup,

ni,k =

Z xi+1

xi

µ
x3i+1 −D3

p

x3i+1 − x3i

¶
b(Dp, xk) dDp +

Z xi

xi−1

µ
D3
p − x3i−1
x3i − x3i−1

¶
b(Dp, xk) dDp. (29)

The discrete system of equations is shown in Figure 2, where the model is pre-
sented in matrix form

M(z, t)
dz

dt
= F (z, t).

Note that also the conventional mass balances have been slightly modified due to
the discretization since they included the particle size density distribution in some
of their terms. As it can be seen from Figure 2, the new system is composed of



2N +11 non-linear implicit ODEs, which can be handled by mathematical software
packages.
The simulation code has been implemented in Matlab

R°
(Mathworks 1999)

software. The command ode15s of Matlab
R°
is suitable for solving this type of

problems, as long as the mass matrix M(z, t) is not singular. If M(z, t) is singular,
then M(z, t) dz/dt = F (z, t) is a system of Differential and Algeabric Equations
(DAEs). DAEs have a solution only when the initial conditions are consistent and
Matlab

R°
(Mathworks 1999) software is not able to handle these systems yet, al-

though it is reported that the coming version (Matlab
R°
version 6 ) is able to solve

the case when M(z,t) is singular.
Square matrices are nonsingular if all eigenvalues differ from zero. Since for

square, triangular matrices, the eigenvalues are found on the main diagonal (Strang
1988), our system can be solved with the command ode15s of Matlab

R°
provided

that all diagonal terms of M(z, t) differ from zero. Taking into account that the
representative particle diameter xi, the discretized particle size distribution φi, and
the difference of densities between solid and liquid (ρp−ρf) are always positive, then
the matrix M(z, t) of the system under study is singular only in three cases: when
the tank is empty (V = 0), when the outlet slurry carries only solids (g = 1) or when
the outlet slurry contains only liquid (g = 0). This means that the simulation code
developed can not be used yet to simulate the start-up of the reactor. Fortunately,
the code can be used to simulate the transient response of the system to disturbances,
which is of most interest in models aimed to be used for control purposes.

6 Results and discussion

6.1 Operating Conditions
Kinetic data of the real leaching process at Elkem Bremanger AS are not available.
However, as it was indicated in section 4.2, values of the reaction rate coefficients for
a Silgrain

R°
-type leaching process have been published in the literature, (Margarido

et al. 1993) and (Martins & Margarido 1996). These values, shown in Table 1, have
been used for the simulations.
The effect of structural composition on the purification of Fe-Si alloys by acid

leaching has been thoroughly analyzed by Margarido et al. (1993, 1997) and Martins
et al. (1997). The results confirm that the structural constitution of FeSi plays a
key role in the degree of disintegration and in the rate of reaction. This means
that the kinetic parameters determined by Margarido et al. (1993) and Martins et
al. (1996) are valid only for the range of FeSi composition which was used in the
experimentation. For this reason, the operating conditions used in the simulation,
shown in Table 4, resemble the operating conditions used by Margarido et al. (1993)
and Martins et al. (1996) in their research, rather than the operation conditions
of the real industrial Silgrain

R°
-process. An additional advantage of this approach
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Table 4: Data for the operating conditions of the leaching reactor.

Inlet FeSi composition
wFe,in wAl,in wCa,in winerts,in
0.1689 0.0132 0.0097 0.8022

Inlet Acid composition
(mol /m3)

CFeCl3,in CHCl,in CFeCl2,in CAlCl3,in CCaCl2,in
2466.1 6032.3 0 0 0

Inlet volumetric solids fraction 0.10

Figure 3: Example of geometric grid

is that the results of the simulations can be compared with the conclusions by
Margarido et al. (1993) and Martins et al. (1996).
Typical values of reactor dimensions and flowrates for hydrometallurgical leach-

ing reactors have been used in the simulations. Values of physical properties: densi-
ties and molecular weights have been taken from (Perry & Green 1984) (Gerhartz,
Yamamoto & Elvers 1985).
Finally, according to Aas (1971), the reactor operates with a FeSi feed of particle

diameter range of 3− 100mm . In this paper, we assume that the input particle size
distribution follows a Rosin-Ramler distribution. Hence, ψin(Dp, t) (m

−4) is given
by

ψin(Dp, t) =
gin (b

0)
3
n

Γ
¡
n+3
n

¢ nb0Dn−1
p exp

¡−b0Dn
p

¢
(30)

where n and b0are the parameters of the Rosin-Ramler distribution, which have been
assumed a value of 0.99 and 153, respectively. These values provide a reasonable
distribution in the working particle diameter range.
A geometric grid has been used for the simulations, where the size range has

been divided into 20 intervals (N = 20), with Dp, i+1 = 1.5Dp,i. Such a grid is more
suitable than a linear grid, due to the disintegration and chemical dissolution events
which lead to the generation of many small particles. Figure 3 shows an example of
a geometric grid and of the representative diameters xi.
The simulations calculate the transient response of the system, initially in steady-

state conditions, to a step change in one of the input variables. The results of the
simulations are presented below.



6.2 Transient response to changes in the acid composition
Two simulations involving a step change in the acid composition at time t = 0 have
been carried out: in the first, the concentration of FeCl3 is reduced from 2466.1 to
1644.1mol /m3 and in the second the concentration of HCl is reduced from 6032.3
to 5000mol /m. Figure 4 and Figure 5 show the results of the first and second
simulation, respectively.
As it can be observed from plot (a) in Figure 4, a decrease in the inlet concentra-

tion of FeCl3 hinders the dissolution of Fe, but has a positive effect in the dissolution
of Ca and to a lesser extent in the dissolution of Al. Conversely, a decrease in the
inlet concentration of HCl hinders the dissolution of Ca and to a much lesser extent
the dissolution of Al, whereas Fe remains nearly unaffected, as it is shown in plot (a)
in Figure 5. Such responses of the system have been compared qualitatively with
the conclusions reported by Martins and Margarido (1996). Our results are in good
agreement with the previous research.
Plot (b) in Figure 4 shows that a decrease in the inlet concentration of FeCl3

leads to a drop in the outlet concentrations of FeCl3 and of FeCl2, as expected.
The increase in the concentration of AlCl3 and CaCl2 is explained by the enlarged
conversion of Al and Ca, respectively. Plot (b) in Figure 5 shows the effects of the
reduction in the inlet concentration of HCl in the composition of the solution. The
trends are the expected: the outlet concentrations of HCl, AlCl3 and CaCl2 fall and
the concentration of FeCl2 is almost unaffected.
Plots (c) and (d) compare the particle size distribution at the inlet, at the ini-

tial steady state (SS1) and at the new steady-state reached after the step change
(SS2). The difference is that in plot (c) the particle size distribution is expressed
as it would be directly measured in a sieve analysis, whereas in plot (d) it is ex-
pressed as number density distribution. As it can be seen from Figures 4 and 5,
the particles have a much smaller diameter at the outlet of the reactor (' 500µm)
than at the inlet (' 18mm). This result indicates that the disintegration process is
properly modelled. Similarly, the dissolution process is also properly modelled, since
a hindered dissolution rate by decreasing the acid concentration causes the particle
distribution to be deviated to larger sizes, i.e. the particles at the outlet in the new
steady-state are larger than in the initial steady state.

6.3 Transient response to changes in FeSi composition
Figure 6 shows the transient response of the system to a change in FeSi chemical
composition from [0.1689, 0.0132, 0.0097, 0.8022] to [0.18, 0.02, 0.015, 0.785]. Since
the inlet composition, wMe,in, which is the reference to calculate the conversion,

XMe =
wMe,in − wMe
wMe,in

is the variable that experiences a step change at time t = 0 in this simulation,
the conversion can only be calculated at steady-state conditions and not during



Figure 4: Transient response where CFeCl3,in is reduced from 2466.1 to
1644.1mol /m3.



Figure 5: Transient response when CHCl,in is reduced from 6032.2 to 5000mol /m3.



Table 5: Conversion of impurities in the initial and final steady-states.
Conversion SS1 Conversion SS2

Fe 0.080 0.070
Al 0.022 0.010
Ca 0.165 0.107

the dynamic response. Therefore, instead of conversion, the evolution of the mass
fraction of impurities has been plotted in plot (a) and the values of conversion at
the initial and final steady-states are shown in Table 5. As expected, the proportion
of impurities in the particles at the outlet of the reactor also rises. It must be
noted that the conversion decreased and this leads to a deviation of the particle size
distribution towards larger particle sizes, as shown in plots (c) and (d).

6.4 Transient response to changes in PSD
Figure 7 shows the transient response of the system to a step change of the inlet
particle size distribution. Parameter n in the Rosin-Ramler distribution is modified
from the initial value 0.99 to a value of 1.25. This means that the average particle
diameter is larger than before. As it can be seen in Figure 7, the outlet particle size
distribution also evolves to larger particle sizes, but the differences are smaller than
in the inlet PSD. This means that the system is able to compensate for variations in
the PSD to some extent. The conversion of metallic impurities and the concentration
of the continuous phase remain almost unaffected, and this is the reason why the
corresponding plots have not been shown in Figure 7.

6.5 Effect of the discretization grid
The simulations whose results have been discussed above were carried out with a
geometrical grid of N = 20, with Dp, i+1 = 1.5Dp,i. ISuch a grid was selected after
a trial-and-error process to determine the grid with the least number of intervals
to give accurate results. Table 6 summarizes some of the the results of simulations
similar to that discussed in section 6.2, a step change in FeCl3 concentration, where
various discretization grids were used. It can be seen that the results for N = 16
differ considerably from the results when N = 20, whereas for a larger number of
intervals the reproducibility of the results is almost exact. Figure 8 shows the PSD
as sieve results for the simulation with N = 16 (plot (a)) and N = 20 (plot (b)).
The shape of the PSD is very alike in both cases, but the values in the ordinate axis
differ noticeably.



Figure 6: Transient response to a change in FeSi composition.

Table 6: Results corresponding to different number of intervals.
wFe wAl wCa CFeCl3 CHCl

N = 16 0.1232 0.099 0.0052 1766.7 6498.1
N = 20 0.1605 0.0129 0.0067 1625.2 5979.7
N = 22 0.1607 0.0129 0.0068 1625.8 5980.2
N = 24 0.1609 0.0129 0.0068 1624.8 5977.9



Figure 7: Transient response to a change in PSD.

Figure 8: Effect of discretization grid: (a) PSD for N = 16 and (b) PSD for N = 20.



7 Conclusions
The intention of this paper was to develop a dynamic model of the main leaching
reactor of a Silgrain

R°
-type process. The presence of particle disintegration during

the chemical dissolution of impurities placed an additional challenge to the inherent
difficulty of modelling reactive particulate processes. A literature review showed
that the population balance equation was the most suitable framework to model
the dynamic behaviour of the particulate assembly, whereas the conventional con-
servation balances could be used to model the dynamic behaviour of the continuous
phase. The resulting mechanistic model, composed of 1 partial integro-differential
equation, 10 non-linear implicit ODE’s and 2 integral equations, can not be solved
analytically. A numerical solution of the system of equations was approached by
dicretizing the population balance in the particle size space using a moving-pivot
technique. Such a discretization transformed the model into a system of implicit
ODE’s, which was then easily implemented inMatlab

R°
for the computation of the

solutions.
A simulation analysis was carried out to test the model. The simulation tests

consisted in executing a step change to one at the time of the input variables of
the model and calculating the transient behaviour of the system. The results of
the simulation were compared qualitatively with experimental results encountered
in the literature. No major discrepancy was found in the comparison.
The model accounts for the disintegration and for the chemical dissolution, and

is considered suitable for a future implementation of a model-based feedback control
system.

8 Further work
It is expected to fit the model to experimental data from the real process and extend
it to account for the complete process. The resulting process model will be used to
optimize the operating conditions of the process, to improve the control system and
for process monitoring.



Notation
Roman Symbols
Symbol Definition Units
a(Dp, t) particle breakup frequency function min−1

b(Dp, y) probability distribution function m−1

b0 parameter of the Rosin-Ramler distribution -
B particle birth rate 1/minm4

Csc molar concentration of soluble component mol /m3

D particle death rate 1/minm4

Dp particle diameter m
g volumetric fraction of solids -
k reaction rate coefficient m /min
m parameter of the Gaudin-Melloy distribution -
M molecular weight kg /mol
n parameter of the Rosin-Ramler distribution -
N number of intervals -
Q volumetric slurry flow rate m3 / s
r reaction (or dissolution) rate mol /m2min
s external surface per unit volume m−1

t time s
V working volume of the reactor m3

Vf volume of leaching liquor in the reactor m3

w mass fraction -
x representative diameter m
X Conversion -
y Mother particle diameter m
Greek symbols
Symbol Definition Units
Γ Gamma distribution function -
δ Delta Dirac function -
η Average number of daughter particles -
µ nth moment of the distribution mn−3

ρp particle density kg /m3

ρf fluid density kg /m3

φ discrete particle size number-density distribution m−3

ψ continuous particle size number-density distribution m−4

Abbreviations

DAE Differential and Algebraic Equations
ODE Ordinary Differential Equations
PB Population Balance
PSD Particle Size Distribution
SS Steady State
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