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The phenomenon of large amplitude self
sustained oscillations in an aeroplane wing
is known as flutter. In this article we de-
scribe our effort to improve an already ex-
isting mathematical model of flutter. Our
work falls into two categories. Making the
model fit the experimental data, and investi-
gating how additive noise affects the model,
including how noise can make a subcriti-
cal Hopf bifurcation look supercritical. To
this end we have developed some numeri-
cal tools among these a continuation routine
and a fourth order Runge Kutta method ca-
pable of integrate systems with noise.
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At The National Aerospace Laboratory
(NAL), Japan, experiments have been con-
ducted on a high aspect ratio aeroplane
wing.1 The experiments were performed in
a wind tunnel at transonic velocities. The
wing was mounted on the ceiling to min-
imize the effect of gravitation. Figure 1
shows a drawing of the wing indicating the
position of the strain gages and accelerome-
ters used to record the motion of the model
in the wind tunnel. The velocity of the
airflow around the wing and the pressure
in the wind tunnel can be changed continu-
ously, thereby changing the dynamical pres-
sure on the wing surface. At low dynamical
pressures, the noise in the wind tunnel ex-
cites the wing and small vibrations around
a stable fixpoint is observed. As the dynam-
ical pressure is increased a critical point is
reached and the wing start to oscillate with a
large amplitude at a frequency of about 22
Hz. These oscillations are known as flut-
ter. In mathematics this is described as a

1A long, slim wing as on most passenger planes,
as compared to the delta wing of a typical jet fighter.



Figure 1: High aspect ratio wing model.

subcritical Hopf bifurcation connected to a
saddlenode bifurcation, see section 3. How-
ever in a single experiment the wing seemed
to undergo a supercritical bifurcation.

To get a better understanding of the flut-
ter phenomenon a mathematical model has
been developed. The model consists of a
two parts, a linear part built from aerody-
namic and aeroelastic theory and a non-
linear part added with little concern to the
physical reality. The linear part describes
the torsional and bending modes of the
wing, in the simplest form only the first
bending and torsional modes are taken into
account yielding a two degrees of freedom
model, in a more complex version six de-
grees of freedom are used. The nonlinear
part of the model is responsible for the cre-
ation of a subcritical Hopf bifurcation.

As noise is present in the experiments we
have examined the effects of adding noise
while simulating the model. In order to do

this we have developed and tested numeri-
cal tools to integrate the system. The rou-
tine used is a classical fourth order Runge-
Kutta enhanced with noise terms.

The temporal behavior produced by the
integrator reproduces the experimental ob-
served behavior very well. In addition to re-
producing the usually observed flutter sce-
nario it has also been possible to reproduce
a temporal behavior that looks like a su-
percritical Hopf bifurcation as has been ob-
served in one experiment.
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In order to reproduce the noisy temporal be-
havior observed in the wind tunnel experi-
ments it has been necessary to make an inte-
gration scheme that includes additive noise.
An Euler integration scheme is often used
for this purpose but in order to speed up the
calculations we have implemented a modi-
fied classical fourth order Runge Kutta inte-
gration routine with fixed step size. To each
of the four coefficient a noise term has been
added. The routine can be written as:*+-,/.10325476-8:9;6&<:=?>A@B6DC EGFH=*+ F .10325476%> *+I,KJ�LI8:9;6M>N=OJ�L�<K=P>A@B6 C EGFH=*+DQR.10325476%> *+ F J�LI8:9;6M>N=OJ�L�<K=P>A@B6SC EGFH=*+�T#.10325476%> *+�QU8:9;6V>W=X<K=P>A@B6SC E F =
The step then becomes:476UYR,Z.[476%> ,\ 2 *+I,G>NL *+ F >NL *+DQ�> *+�T�<@B6

is white noise and
E

is the standard de-
viation of the noise. Note that the

*+&6
’s in-

cludes a multiplication with the stepsize and
that the noise term is multiplied by

C =
this

ensures convergence for the algorithm.
In order to check the performance of the

integrator the simpler Euler has been im-
plemented for comparison. The first two
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(a) The first Kramers-Moyal coefficient
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(b) The second Kramers-Moyal coefficient

Figure 2: Kramers-Moyal coefficients

Kramers-Moyal coefficients has been cal-
culated using an average over 2000 steps
and a large number of different stepsizes,
see Figure 2(a) and 2(b). The Kramers-
Moyal coefficients obtained using the Eu-
ler method are very good as they are al-
most independent of the stepsize whereas
the fourth order Runge-Kutta needs steps
shorter than ]?^7_a`Sbdc in order to obtain the
same property. Test runs with the two meth-
ods on our set of stokastic differential equa-
tions shows that the Runge-Kutta is stable
for all stepsizes upto _a` bdc whereas the Eu-
ler method fails to stay in the vicinity of
a stable solution for stepsizes larger than_a`SbSe .

f gih jIkmlDnBo'p�h qsr�t
The two different types of Hopf bifurca-
tions are central in this work this section
will give a brief introduction to the subcrit-
ical Hopf bifurcation and the supercritical
Hopf bifurcation.

In a Hopf bifurcation a fixpoint (steady
state solution) loses stability and limit cy-
cle oscillations occur ( a standing wave ).
In a supercritical Hopf bifurcation the am-
plitude of the oscillations grows slowly as
seen in figure 3(a). In the subcritical bifur-
cation the solution suddenly jumps from the
fixpoint to a large amplitude oscillation, fig-
ure 3(b).

The supercritical bifurcation is the sim-
plest of the two, in this a stable fixpoint
turns unstable and a stable limitcycle ap-
pear in the bifurcation point. The amplitude
of this oscillation grows as the square root
with the bifurcation parameter. In the sub-
critical bifurcation almost the same thing
happens, a stable fixpoint turns unstable and
a limit cycle appear. However in this bifur-
cation the limit cycle is unstable, this means
that a seperation of state space occur. In
the most common case th e unstable limit
cycle again turns stable in a saddlenode bi-
furcation. The result of this is that when
the Hopf bifurcation point is reached the so-
lution jumps to the stable large amplitude
limit cycle.

u v q�wyx�z{z|h:r�}
The model we have been working with is a
6 dimensional set of differential equations
with one nonlinearity. The nonlinearity has
been implemented so that it is in corespon-
dence with the present understanding of the
underlaying physics. The parameters in the
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(a) Supercritical Hopf bifurcation.
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(b) Subcritical Hopf bifurcation.

Figure 3: The two different types of Hopf
bifurcations.

model are two generalized coordinates, ~U� ,
the first derivatives and aerodynamic de-
lays, ��� . The amplitude of ~ , is refered to
as the amplitude of an oscillation. The state
vector is:

� .�2 ~ ,H8 ~ F 8V�~ ,�8V�~ F 8 � ,�8 � F <K�
The model can be written as:

�� .���2��I< � >A�B2 � 8��I<
where

�
is the velocity of the airflow. The��2��I<

matrix is determined using methods
for subsonic flows. A factor has been mul-
tiplied to bring the numerically found bifur-
cation point in agreement with the experi-
mentally found velocity. We have used a
typical flutter case from the tests performed
in May 1997 (F6-17) where the velocity
was v = 266 m/s.

The nonlinear part
��2 � 8:�-<

consists of
second and fourth order terms in � and is
added to the accelration of the first bend-
ing mode. This is done to achive the ex-
perimentally found sub-critical Hopf bifur-

cation.The vector is given as:

�B2 � 8��I<�.
�������
�

��� Q;Q�25�I<�2|�%� ~ F, >�� ~ T, <���

��������
�

The two coefficients
�

and
�

can be used
to move the saddlenode bifurcation point.
Increasing

�
decreases the amplitude at

the bifurcation point and lowers the corre-
sponding value of the bifurcation parame-
ter, whereas increasing

�
mainly decreases

the amplitude. This can be used to select
any location of the saddlenode bifurcation
point.

This model has been used in most of the
work. Additionally we have used a normal-
form of a subcritical Hopf bifurcation with
fourth order terms added to give a saddlen-
ode bifurcation. The over all behavior of
this is like the one sketched in Figure 3(b).

�V�|�  �¡3¢¤£�¥§¦H¨�©«ª�¡3¬3¨))®¯¥M°Z¦
The typical temporal behaviour found dur-
ing the wind tunnel tests was as shown in
figure 5(a). Noise excites the wing and
small vibrations around the stable fixpoint
are seen. The dynamical pressure is slowly
increased until at a certain point the oscil-
lations grow in amplitude. The large os-
cillations arising have a frequency of 22
Hz. After a short period the oscillations are
stoped to avoid damaging the wing. This
behaviour is typical for a system undergo-
ing a subcritical Hopf bifurcation.

Several wind tunnel test have been per-
formed to determine the exact dynamical
pressure for the onset of the large oscila-
tion. Figure 4 indicates how a noisy system
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Noise Level

Figure 4: Noise creates small vibrations
around the stable fixpoint. At some critical
point the noise is sufficient to push the so-
lution past the unstable limit cycle (sepera-
trix) and large limitcycle oscillations occur.
It is clear that the critical point may vary
between experiments.

behaves near the Hopf bifurcation and also
show why the critical point is not well de-
fined.

In figure 5(b) the result of a numerical
simulation can be seen. The mathematical
model is clearly able to produce temporal
behaviour close to what is seen in the ex-
periments.

�V�²± ³'°§£�¡�¦H´
¦�®¶µd®¯´R¨§©M·¸¥�£3¹�ª§®º¹U°Z¦H´#¨�»µd®¯¥B¼
In a single wind tunnel experiment the be-
haviour was different than what was nor-
mally found. Instead of the normal sudden
jump to large amplitude oscillations, small
oscillations was seen, and as the dynamic
pressure was decreased the amplitude of
these oscillations also decreased. As can be
seen on figure 3(a) this is what would be
expected if a supercritical Hopf bifurcation
was present in the system. All efforts to find
the location of this supercritical bifurcation
experimentally has been unsuccesful.

Using a normal form of a subcritical
Hopf bifurcation we have established that
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(a) Experimental behaviour. When large
amplitude oscillation occur the experi-
ment is stopped imidiatly to avoid dam-
age of the wing.
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(b) Numerical simulation. The ordinate show
the velocity and the abscissa the ampli-
tude. The figure should only be compared
qualitatively to figure 5(a).

Figure 5: Temporal behaviour. Noise cre-
ates small vibrations around the stable fix-
point. As the dynamic pressure is increased
a critical point is reached and the amplitude
of the oscillations grows.
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it is possible to find a temporal behaviour
similar to what would be expected if a su-
percritical Hopf bifurcation occured in the
system.
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(a) Experimental behaviour.
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(b) Numerical simulation. The ordinate
show the bifurcation parameter and the
abscissa the amplitude. As inm figure
5 numerical behaviour should only be
compared qualitatively to the experimen-
tal behaviour.

Figure 6: What appears to be the result of a
supercritical Hopf bifurcation can be found
by applying noise to a subcritical bifurca-
tion.

When a low level noise is applied to the
normal form of the subcritical bifurcation
below the Hopf bifurcation point, what ap-
pears to be small amplitude limit cycle os-
cillations can be observed. When the bi-
furcation parameter is decreased the ampli-

tude of the oscillations also decreases. The
experiments and the numerical simulation
are qualitatively similar see figures 6(a) and
6(b).

The behavior of the system could be ex-
plained by the fact that at the Hopf bi-
furcation point two complex eigenvalues
cross the imaginary axis and the solution
becomes unstable. However, just before
the bifurcation the real part of the two
complex conjugated eigenvalues is negative
and close to zero, hence the damping is
small. Further away from the bifurcation,
the real part of the eigenvalues becomes
more and more negative, hence the damping
is larger, and the disturbances introduced
by the noise are attracted faster to the fixed
point.

We have not been able to produce these
results with our model of the wing. How-
ever given that the bifurcation phenomena
are the same we now believe that a subcrit-
ical bifurcation is solely responsible for the
wing dynamics.

½ ¾A¿sÀ�Á«ÂKÃ�Ä3ÅÆ¿(À
An already existing mathematical model
has been improved and analyzed. To get
a better understanding of the flutter phe-
nomena and how noise influences the wing,
noise has been added to the system. This
has been done by adjusting a fourth order
Runge Kutta with fixed time step. The in-
tegrator has been tested and the Kramers-
Moyal coefficients show that the method is
stable for step sizes less than ÇaÈIÉdÊ .

The improvements of the model includes
an analysis of the nonlinearities and the
physics behind, and an examination of how
the nonlinear coefficients can be changed to
secure that the bifurcations are at the correct
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locations.
Comparing the experimental results with

the numerical results reveals good corre-
spondence between the model and the ex-
periments. The temporal behavior produced
produced by numerical simulations are very
similar to the behavior seen in the wing.
What in the experiments appeared to be a
supercritical Hopf bifurcation can be repro-
duced by a model which only contain a sub-
critical bifurcation.
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