
OPC-based real time simulator: architecture and practical
example

Jesús M. Zamarreño*, Felipe Acebes**, Raúl Alvés**

* Dpt. de Ingeniería de Sistemas y Automática. Facultad de Ciencias. Universidad de
Valladolid

c/ Dr. Mergelina s/n. 47011 Valladolid. Spain

Tlf.: +34 983423566, Fax: +34 983423161

e-mail: jm@autom.uva.es

** Centro de Tecnología Azucarera. Edificio Alfonso VIII

47011 Valladolid. Spain

Tlf.: +34 983423563, Fax: +34 983423616

e-mail: felipe@cta.uva.es

Abstract
Real time simulators are very interesting tools in plenty of situations: they can be used for
training of operators, analysis of behaviour of real systems without compromising the plant,
platform for probing new control algorithms or tuning controllers, etc. In this paper, the
objective is to build an open simulation architecture that allows accessing and/or modifying
the variables included in the simulation from any other tool in a standard way using OPC
(OLE for Process Control). The simulator is executed in real time, and in our case, it has
been generated from the EcosimPro simulation language.

1. Introduction

Usually, when anybody wants to build a simulation of any particular process, he/she uses a
proper simulation tool like ACSL, Simulink, Dymola, Spice, Aspen, etc or even a standard
programming language like C, C++, Fortran, etc. When the simulated process needs to be
controlled, a common approach is to code the controllers in the same simulation tool.
Another approach would be to use another tool (a controller, a SCADA, etc.) to
communicate with the simulation, but in this case the difficulty is how to choose the
communication protocol to achieve this; it could be done using files to interchange data
between the two programs, using sockets, etc., but in any case, the communication is
usually a very specific and complicated task.

OPC means OLE for Process Control, it is based on Microsoft technology and is an
industrial standard that provides a common interface for communication that allows
individual software components to interact and share data. OPC communication is
performed as a client/server architecture. The OPC server is the data source (like a
hardware device at plant floor) and any OPC-based application can access it for
reading/writing any variable provided by the server (Figure 1). It is an open and flexible

solution to the classical proprietary driver problem. Nearly all of the world's major
providers of control systems, instrumentation, and process control systems are including
OPC in their products.

Applications that
use data

(OPC Client)

Data sources,
read/write

(OPC Server)

HMI/SCADA

High-level
controller,
e.g. MBPC

Display or
Report

Application

Data
Acquisition

Board

Simulator SCADA

DCS

Process Process

PLC

Process

Figure 1. OPC facilitates communication between plant floor devices or databases and custom
applications

The advantage of providing OPC capability to a simulation is that any OPC product acting
as a client can access the variables of the simulation. The variables can be accessed using
an intuitive browser and selecting the variables by natural names or tags from the tree
structure.

One limitation of OPC is that only runs on Microsoft platforms; specifically, Windows NT
is recommended, though it can be installed on Windows 95 with DCOM extension,
Windows 98 and now in recent Windows 2000.

Several tools exist for programming an OPC application; most of them consist in that they
provide classes in C++ that facilitates the development of the application. As the OPC
server is better built in C++, for perfect integration of the software, it would be preferable
to write the simulation in C++ or select an advanced simulation tool able to generate C++
code. One of these simulation tools is EcosimPro.

EcosimPro is a continuous system simulator capable of dealing with differential algebraic
equations (DAEs). The simulation language (EL) is based on components; that is, it uses
the object oriented language ideas, with all its advantages like encapsulation, inheritance,
and reusability of components.

As it has been said before, a simulation written in EcosimPro generates automatically C++
code. So, the only task to be performed to obtain our goal is to integrate the simulation in
an OPC server. The result is a program that can be accessed from any OPC client, like a
SCADA, to read values of desired variables in a transparent way and with the sampling
period selected by the user. If the OPC client is a controller, it also could write the values of

the calculated manipulated variables in the OPC server (the simulation) in real time. The
different blocks that form the system are represented in Figure 2.

Write the
simulation
code in
EcosimPro

Simulation
in C++

OPC Server
frame in
C++

Simulation
OPC Server

Integrate:
• Variables to serve
• Real-time

OPC Client
(SCADA)

OPC Client
(Controller)

OPC Client
(Supervision)

OPC Client
(...)

Figure 2. Integration of a real-time simulation into an OPC Server

In order to show an example in which probing the proposed architecture, a process pilot
plant has been selected. The simulation will be used to validate a knowledge-based system
for fault detection and diagnosis. In this particular case the simulation will communicate
with a SCADA system by means of OPC. Each sampling period the simulation puts process
values in the database of the SCADA, the control module of the SCADA calculates the
control variables and sends them to the simulation. The pilot plant is a sufficiently complex
system to justify the use of an advanced object-oriented modelling and simulation tool like
EcosimPro; besides EcosimPro has the advantage that it generates the simulation code as a
C++ class that makes easier to build the simulation OPC Server.

2. Application Architecture

The OPC Server to be built is a real-time simulator. The simulation can represent any
dynamic process represented by differential and algebraic equations. The proposed
simulation language is EcosimPro because it generates C++ code that can easily be
integrated into a C++ project. The OPC Server has two tasks: integrate the process
equations in real time and provide the simulation data as OPC items. As the two tasks must
be executed in parallel, the proposed implementation is running the two subprocesses as
threads. At the same time that the simulation is running, the OPC Server object can attend
OPC client petitions.

Variables provided by the OPC server are structured in a hierarchical way. First of all, the
OPC server can be located in a different node than the OPC client, so the root of the OPC
server is specified as the node and the server name. Variables (items) are aggregated into
groups. Hence, the specification of any variable stored in the OPC server is as follows:
Node.Server_name.Group.Item. Items (simulation variables) can be included in groups as
convenient. For example, a convenient classification could be either inputs and outputs, or
tank, heater, reactor, etc.

Information interchange between a SCADA and the proposed OPC-based real time
simulator is represented in Figure 3.

(constant sampling
time per group)

(per request)

OPC
Client

SCADA OPC
Server

SIMULATOR
(real-time progress,

but can be
accelerated if

desired)

write

read

Figure 3. Communication between a SCADA and the Simulator

3. Practical example

The example that shows the flexibility and capability of the proposed architecture is the
simulation of a pilot plant to be physically built in the future. It exhibits complex dynamic
behaviour as a consequence of interactions between simple elements like tanks, pipes,
pumps, sources and drains. The process is represented in Figure 4 and it is an excellent
process to take advantage of the object-oriented nature of EcosimPro as the only task for
building the simulation is to write the code for every simple element (or take them from an
existing component library) and connect them in a proper way. Integration of the
simulation C++ classes into an OPC Server is easy and it can be accomplished in a matter
of hours using any available OPC toolkit (in our case, the OPC Server Toolkit from
Softing).

3.1 Plant description

The plant represented in figure 4 receives the water from the outside and has two lines for
processing. The user, acting over the pump P2, can select the amount of material that flows
through each line. The liquid in each flow line can be heated and/or recycled in the tanks

D2 and D3 and, finally, the liquid that overflows the tanks D2 and D3 is mixed in the tank
D4.

The control structure is very simple, the levels of tanks D1 and D4 are controlled using two
PI controllers that manipulate the liquid extracted by P1 and P5. The level of tanks D2 and
D3 does not need any controller because they work by overflowing.

The objective is to use the plant as a test for new techniques for fault detection and
diagnosis in real time. For this reason, the plant provides several configurations that can be
selected by the user connecting or not the pumps (P3 and P4) and/or the resistors of D2 and
D3. In the future, some variables will be included to simulate faults in pipes, pumps and
tanks. Finally, using the simulation, all the levels, flowrates and temperatures are monitored
from the SCADA, but in the real plant all of this information will not be available because
a lot of instrumentation would be necessary and, thus, the problem of diagnosis would be
easy to solve.

Figure 4. P&I of the plant

3.2 Model description

EcosimPro is an object oriented modelling tool that provides the description of the model
of a system selecting the elemental units that form it from a predefined library and
connecting them using ports. EcosimPro, using symbolic handling of the set of equations

formed by the non-causal equations of each component and the equations generated by
EcosimPro, automatically generates the final model according to the connection topology.

In this case, a library of components has been defined; this library consists on ports (some
of them to analog signal and others to liquid), process units (that are modelled using first
principles models) and control units. The classes of process units are sources and drains of
water, pipes, pumps and tanks; and the classes of control units are signal generators,
sensors, actuators and PI controllers.

Using the capabilities of the object-oriented technology, three different classes of tanks
have been defined: the first with three input fluid ports and two output fluid ports, the
second with two input fluid ports and one output fluid port and the third with two input
fluid ports, two output fluid ports (one of them for overflowing) and an electrical resistor
for heating. All of these classes of tanks inherited output analog ports for the level and
temperature signals.

According to the syntax of EcosimPro, the model of the plant is shown in the appendix.

It must be noted that the sentences of the control structure have been suppressed from the
model because they are implemented in the SCADA, however they were included in the
phases of development and test of the simulation. In a subsequent step, faults and
malfunctions of the plant will be included in the simulation when the library of components
will be completed.

3.3 Variables provided by the OPC Server

Basically, for building an OPC Server, the important steps in relation with the simulation
data are to build the namespace, that is, the names and types of the data to be provided by
the OPC Server, and to read/write values from/to the simulation whenever requested.

For this simulation, OPC items (simulation data we wished to be shared) are classified as
inputs and outputs, that is, two OPC Groups are created, each of one containing the
following data items:

• Inputs (and data type):
� Supplied pressure of liquid (real)

� Supplied temperature of liquid (real)

� Actuator of resistor of T2 (boolean)

� Actuator of resistor of T3 (boolean)

� Actuator of pump P1 (real)

� Actuator of pump P2 (real)

� Actuator of pump P3 (boolean)

� Actuator of pump P4 (boolean)

� Actuator of pump P5 (real)

• Outputs:
� Level of D1 (real)

� Level of D2 (real)

� Level of D3 (real)

� Level of D4 (real)

� Temperature of T1 (real)

� Temperature of T2 (real)

� Temperature of T3 (real)

� Temperature of T4 (real)

� Flowrate of T1 (real)

� Flowrate of T2 (real)

� Flowrate of T3 (real)

� Flowrate of BT1 (real)

� Flowrate of BT2 (real)

� Flowrate of BT3 (real)

� Flowrate of BT4 (real)

� Flowrate of BT5 (real)

3.4 Accessing the simulation from a SCADA

Once the OPC-based real simulator executable is obtained joining, as explained before, the
EcosimPro generated C++ classes and the OPC Server frame; it is ready to be used by
OPC-enabled applications. In our case, we will show access to the simulator using
FactorySuite 2000; a SCADA from Wonderware that allows OPC communication through
an OPC Client called OPCLINK. An operator window (Figure 5) is designed showing a
scheme of the plant including updated values of important variables (coming from the
simulator through OPC). The operator can also act upon some variables (modify the flow-
rate and the temperature of the water that feeds into the plant, switch on/off the pumps
and/or the electrical resistors) that would be updated on the simulator through an OPC write
request.

Figure 5. MMI of the simulation from the SCADA

4. Conclusion

In this paper, it has been presented a real-time simulation architecture that takes advantage
of the OPC technology to become an open, flexible and robust system that can be used
from any OPC-enabled application to interact with the simulation. Writing a robust
simulation using an advanced simulation tool like EcosimPro and providing the OPC server
capability permits the engineer to perform a variety of experiments and configurations from
a SCADA before compromising the real plant. Once the configuration is considered
appropriate, the data source, i.e. the simulation, may be replaced with a DCS (OPC-
compliant).

5. Acknowledgements

The authors express their gratitude for the support of the "Comisión Interministerial de
Ciencia y Tecnología" (CICYT) through the project "Simulador de factorías azucareras
para optimización del proceso y entrenamiento de personal" (TAP 1FD97-1450).

6. Links

EcosimPro: http://www.empre.es/ecosim/esp/ecosim.html

OPC Foundation: http://www.opcfoundation.org/

Softing: http://www.softing.com

Wonderware: http://www.wonderware.com/

7. Appendix. Plant Pilot Model

USE CICYT_CARLOS

COMPONENT planta_piloto

 DATA -- Global data

 REAL Pres_suministro=1.5e+5

 REAL diametro_BT1=0.0125

 REAL diametro_BT2=0.0105

 REAL diametro_BT3=0.00725

 REAL diametro_BT4=0.00725

 REAL diametro_BT5=0.0125

 REAL diametro_T1=0.011

 REAL diametro_T2=0.015

 REAL diametro_T3=0.015

 DECLS

 TOPOLOGY -- Elements instantiation and connection sentences

 Fuente_agua F1 (P=Pres_suministro, T=20.)

 Deposito_3_2 D1 (area_base=0.04 , h_deposito=0.3 , h_entrada1=0.3 , h_entrada2=0.3 , h_entrada3=0.3 ,h_salida1=0.025 ,\

 h_salida2=0.025 , diametro_tuberia_salida1=diametro_BT1 ,diametro_tuberia_salida2=diametro_BT2 , k_rebose=0.025)

 Deposito_1_1_1r_resistencia D2 (area_base=0.02 , h_deposito=0.25 , h_entrada1=0.25 , h_salida1=0.025 , h_salidar=0.225 , \

 diametro_tuberia_salida1=diametro_BT3 , diametro_tuberia_rebose=diametro_T2, k_rebose=0.025 ,potencia_maxima=1200.)

 Deposito_1_1_1r_resistencia D3 (area_base=0.02 , h_deposito=0.25 , h_entrada1=0.25 , h_salida1=0.025 , h_salidar=0.225 , \

 diametro_tuberia_salida1=diametro_BT4, diametro_tuberia_rebose=diametro_T3 , k_rebose=0.025 potencia_maxima=1200.))

 Deposito_2_1 D4 (area_base=0.04 , h_deposito=0.3 , h_entrada1=0.3 , h_entrada2=0.3 , h_salida1=0.025 ,\

 diametro_tuberia_salida1=diametro_BT5 , k_rebose=0.025)

 Bomba_y_tuberia BT1 (rr=0.404 , lr=0.0324 , km=0.02, j=0.0134 , radio_paleta=0.03, \

 h_entrada=0. , h_salida=0.65, diametro=diametro_BT1, fanning=0.005, n1=0 , n2=3 , long=0.8 , ff=1.e-4)

 Bomba_y_tuberia BT2 (rr=0.404 , lr=0.0324 , km=0.02, j=0.0134 , radio_paleta=0.02, \

 h_entrada=0. , h_salida=0.65, diametro=diametro_BT2, fanning=0.005, n1=0 , n2=3 , long=0.8 , ff=1.e-4)

 Bomba_y_tuberia BT3 (rr=0.404 , lr=0.0324 , km=0.02, j=0.0134 , radio_paleta=0.02, \

 h_entrada=0.45 , h_salida=0.3 , diametro=diametro_BT3, fanning=0.005 , n1=0 , n2=1 , long=0.3 , ff=1.e-4)

 Bomba_y_tuberia BT4 (rr=0.404 , lr=0.0324 , km=0.02, j=0.0134, radio_paleta=0.02, \

 h_entrada=0.45 , h_salida=0.3 , diametro=diametro_BT4, fanning=0.005, n1=0 , n2=1 , long=0.3 , ff=1.e-4)

 Bomba_y_tuberia BT5 (rr=0.404 , lr=0.0324 , km=0.02, j=0.0134 , radio_paleta=0.03, \

 h_entrada=0. , h_salida=0. , diametro=diametro_BT5, fanning=0.005, n1=0 , n2=0 , long=0.5 , ff=1.e-4)

 Tuberia T1 (h_entrada=0.3 , h_salida=0.3 , diametro=diametro_T1, fanning=0.005, long=1. , n1=0 , n2=0)

 Tuberia T2 (h_entrada=0.65 , h_salida=0.3 , diametro=diametro_T2, fanning=0.005, long=0.5 , n1=0 , n2=1)

 Tuberia T3 (h_entrada=0.65 , h_salida=0.3 , diametro=diametro_T3, fanning=0.005, long=0.5 , n1=0 , n2=1)

 Sumidero_agua S1

 CONNECT F1 TO T1

 CONNECT T1.salida TO D1.entrada1

 CONNECT D1.salida1 TO BT1.entrada

 CONNECT BT1.salida TO D3.entrada1

 CONNECT D1.salida2 TO BT2.entrada

 CONNECT BT2.salida TO D2.entrada1

 CONNECT D2.salida1 TO BT3.entrada

 CONNECT BT3.salida TO D1.entrada2

 CONNECT D2.salidar TO T2.entrada

 CONNECT T2.salida TO D4.entrada1

 CONNECT D3.salida1 TO BT4.entrada

 CONNECT BT4.salida TO D1.entrada3

 CONNECT D3.salidar TO T3.entrada

 CONNECT T3.salida TO D4.entrada2

 CONNECT D4.salida1 TO BT5.entrada

 CONNECT BT5.salida TO S1

 Actuador ACTUADOR1 (valor=1.)

 Actuador ACTUADOR2 (valor=0.)

 Actuador ACTUADOR3 (valor=0.)

 Actuador ACTUADOR4 (valor=0.)

 Actuador ACTUADOR5 (valor=0.)

 CONNECT ACTUADOR1.control TO BT2.control

 CONNECT ACTUADOR2.control TO BT3.control

 CONNECT ACTUADOR3.control TO BT4.control

 CONNECT ACTUADOR4.control TO D2.control_resistencia

 CONNECT ACTUADOR5.control TO D3.control_resistencia

END COMPONENT

	Introduction
	Application Architecture
	Practical example
	Plant description
	Model description
	Variables provided by the OPC Server
	Accessing the simulation from a SCADA

	Conclusion
	Acknowledgements
	Links
	Appendix. Plant Pilot Model

