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Abstract

Linguistic Equation (LE) modelling approach has various applications in nonlinear multivariable systems.

Insight to the process dynamic operation is maintained, and automatic generation of systems, model�based

techniques and adaptation techniques can be applied in developing and tuning systems for process modelling

and control. The multimodel LE approach provides a compact modelling of more or less smooth input�output

dependencies. The overlapping operting areas are obtained by fuzzy clustering. The Fuzzy�ROSA method

(FRM) serves for a data�based rule generation to model a given input�output dependency and is e�cient for

modelling complicated local nonlinear structures. These properties are combined in a hybrid data�based mod-

elling concept which is applied to dynamic simulation of a solar power plant. The performance of the simulator

is considerably enhanced with this concept, and the hybrid simulator can be used in control design. The hybrid

approach was tested in data�based modelling of dynamic behavior of a solar plant.

Keywords: Solar power plant, dynamic modelling, intelligent simulation environments, nonlinear models,

linguistic equations, fuzzy set systems

1 Introduction

In intelligent control design, hybrid techniques combining di�erent modelling methods in a smooth and consistent way are

essential for successful comparison of alternative control methods. Switching between di�erent submodels in multiple model

approaches should be as smooth as possible. For slow processes, predictive model�based technique is necessary at least

on the tuning phase. Adaptation to various nonlinear multivariable phenomena requires a highly robust technique for the

modelling and simulation.

Dynamic simulators based on Linguistic Equations are continuously used in development of multilayer linguistic equation

controllers, in which the basic PI type LE controller is extended by a working point controller and a module for asymmetry

handling and braking [1]. This new type of controller was �rst implemented on a solar collectors �eld in a solar power station

at Plataforma Solar de Almeria [2, 3]. This approach has been applied to the control of the lime kiln. First the burning

end was controlled with a multilevel linguistic equation controller [4], and later this approach has been extended to other

control tasks.

The multilevel LE controller is now on on�line use in an industrial lime kiln, and the experiences are very similar to the

simulation results. Smooth production rate changes are found to be preferable also in the real process. The robust dynamic

simulator based on Linguistic Equations is an essential tool in �ne�tuning of all these controllers.

2 Solar Power Plant

The aim of solar thermal power plants is to provide thermal energy for use in an industrial process such as sea water desal-

ination or electricity generation. If such plants are to provide a viable, cost e�ective alternative to more polluting forms of

power production, they must achieve this task despite �uctuations in their primary energy source, the sunlight. In addition

to seasonal and daily cyclic variations, the intensity depends also on atmospheric conditions such as cloud cover, humidity,

and air transparency. The purpose is not to maintain a constant supply of solar produced thermal energy in spite of the

disturbances. Rather the aim of the control scheme should be to regulate the outlet temperature of the collector �eld in

order to supply steam to the turbine in a range as constant as possible despite the disturbances and uncertainties, changes

of the solar radiation, ambient temperature, inlet oil temperature etc.



Figure 1: Acurex Solar Collectors Field of the Plataforma Solar de Almeria.

This is bene�cial in a number of ways. Firstly, it collects any available thermal energy in an usable form, i.e. at the desired

temperature, which improves the overall system e�ciency and reduces the demands placed on auxiliary equipment as the

storage tank. Secondly, the solar �eld is maintained in a state of readiness for the resumption of full scale operation when

the intensity of the sunlight rises once again; the alternative is unnecessary shutdowns and startups of the collector �eld

which are both wasteful and time consuming. Finally if the control is fast and well damped, the plant can be operated close

to the design limits thereby improving the productivity of the plant.

All the experiments were carried out in the Acurex Solar Collectors Field of the Plataforma Solar de Almeria located in the

desert of Tabernas (Almeria), in the south of Spain (Figure 1). The Acurex �eld supply thermal energy (1 MW) in form of

hot oil to an electricity generation system or a Multi�E�ect Desalination Plant. The solar �eld consists of parabolic�trough

collectors [2, 3]. Control is achieved by means of varying the �ow pumped through the pipes during the plant operation. In

addition to this, the collector �eld status must be monitored to prevent potentially hazards situations, e.g. oil temperatures

greater than 300 oC. When a dangerous condition is detected software automatically intervenes, warning the operator and

defocusing the collector �eld.

2.1 Modelling Problem

Trial and error type controller tuning does not work since the operating conditions cannot be reproduced. The dynamic of

the process depends on the general �eld operating conditions and characterised by the following aspects:

� Time varying transport delay depends on the manipulated variable (oil �ow rate).

� The dynamics, in particular high frequency peaks in the frequency response of the plant, is di�cult to model.

� The plant has a nonlinear behavior, and therefore linearised models depend on operating point.

� The solar radiation acts as a fast disturbance with respect to the dominant time constant of the process.

Test campaign cannot be planned in detail because of changing weather conditions. Usually, test campaigns include step

changes and load disturbances. Weather conditions take care of radiation disturbances. As the process must be controlled

all the time, modelling is based on process data from controlled process.

2.2 Dynamic Simulators

Operating conditions cannot be reproduced and weather conditions have seasonal di�erences. Therefore, dynamic simulat-

ors are needed in controller design and tuning. Conventional mechanistic models do not work: there are problems with

oscillations and irradiation disturbances. For nonlinear multivariable modelling on the basis of data with understanding of

the process there are two alternatives: fuzzy set systems and linguistic equations.

Linguistic equation (LE) models provide a good overall behaviour in di�erent operating conditions. Oscillations are well

represented, and the temperature is on an appropriate range in the case of irradiation disturbances. However, some prob-

lems have been detected in extensive comparisons with process data: there is a shift in temperature level for some operating

conditions. In some conditions the shift is positive and in some conditions negative. The present model needs improvements

also for load disturbances.

Flexible fuzzy models generated with the Fuzzy-ROSA method provided additional tools for these situations [5]. These

fuzzy models are useful in handling special situations in limited operating range.



3 Data�Based modelling

For the modelling of technical complex processes one is often restricted to only with data�based methods since a com-

plete mathematical process description is not practicable with justi�able expenditure. Various modelling approaches try to

combine the advantages of the physical and data�driven modelling techniques, e.g. parameters for mechanistic models are

approximated by black�box techniques. Since the identi�cation is on a practical level only for linear systems, a lot of work

with local linear models is needed.

Intelligent methods have extended the toolbox to hybrid, semi�mechanistic or grey�box modelling. Fuzzy clustering is an

extension of fuzzy knowledge based systems to data�driven techniques. Neuro�fuzzy modelling and identi�cation techniques

include fuzzy�logic�based methods to neural computing. Linguistic equations have close links to both fuzzy set systems and

neural networks.

3.1 Data preprocessing

Moving average or moving median are suitable methods for removing noise from the measurements. The direct measurement

value is not always best one to be used in modelling. Sometimes moving variance, standard deviation or value range are

more informative for the phenomena. Also moving skewness and kurtosis can be obtained. Selecting appropriate window for

this moving statistics is also an important decision. Trend removal on the basis of the user de�ned window (moving average

or median) can be included to the preprocessing if the variation around the trend is important for the modelling.

The FuzzEqu Toolbox developed in Matlab-Simulink environment provides tools for experimenting with di�erent methods

and windows [6]. The data set is updated only after accepting the operation. Several statistical operations can applied

also sequentially to the data, e.g. after trend removal the resulting data can be analysed other statistical methods. Delay

analysis can be done automatically to the data set. However, these approaches work only for small systems. For large

systems, domain expertise is necessary in assessing these result.

3.2 Linguistic Equation Approach

Linguistic Equations (LE) approach combines various intelligent modelling techniques on a uni�ed framework: it was origin-

ally developed for handling large knowledge bases in process design [7]; a close connection to fuzzy systems was important

already in the early applications [8]; data�driven modelling properties have brought the approach close ANN techniques.

Fuzzy modelling and control was the main application area. Properties of the LE approach are continuously improved

and extended on the basis of industrial experience with various application areas, and recently, emphasis is moving from

development to direct applications [9, 2, 10, 3].

Each equation represents a multivariable interaction: the directions and strengths of interactions are de�ned by coe�cients

of the interaction matrix. Only the variables with nonzero coe�cient belong to the interaction [11]. Nonlinearities are taken

into account by membership de�nitions consisting of two polynomial functions, one for positive and one for negative side

labels. With these de�nitions the values of input variables are mapped to the range �2:::2 which correspond to the labels

very low .... very high (or negative big ... positive big); normal (or zero) is always zero. After the matrix calculations, the

outputs are mapped from linguistic level to the real scale. Since only �ve parameters is needed for each variable, the LE

systems can be adapted to various working conditions.

The FuzzEqu toolbox includes routines for building a single LE system from large fuzzy systems including various ruleblocks

implemented in FuzzyCon or Matlab FLT. Fuzzy models on any fuzzy partition can be generated from LE models: rules

or relations are developed either sequentially or simultaneously [9], and membership functions are generated from the

membership de�nitions on any location in the range �2:::2. In each equation, the locations of membership functions of one

selected variable can be de�ned by the model.

3.3 Dynamic LE modelling

Dynamic fuzzy models can be constructed on the basis of state�space models, input�output models or semi� mechanistic

models [12]. In the state�space models, fuzzy antecedent propositions are combined with a deterministic mathematical

presentation of the consequent. The most common structure for the input�output models is the NARX /Nonlinear AutoRe-

gressive with eXogenous input) model which establishes a relation between the collection of past input�output data and the

predicted output:

y(k+ 1) = F (y(k); :::; y(k � n+ 1); u(k); :::; u(k �m+ 1)); (1)

where k denotes discrete time samples, n and m are integers related to the systems' order. MIMO systems can be built as

a set of coupled MISO models. Delays can be taken into account by moving the values of input variables correspondingly [13].

The basic form of the linguistic equation (LE) model is a static mapping in the same way as fuzzy systems and neural

networks, and therefore dynamic models will include several inputs and outputs originating from a single variable. External

dynamic models provide the dynamic behaviour.
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Figure 2: A dynamic LE model for temperature di�erence.

In the single model approach, also variables a�ecting to the working point of the model are included to the model. In small

models, all the interactions are in a single equation. For larger models, the equation system is a set of equations where each

equation describes an interaction between two to four variables. The development work starts with an automatic generation

of membership de�nitions, which are then used in generation of interaction alternatives. Any equation can be rejected or

modi�ed on the basis of expert knowledge before or during the tuning phase.

The dynamic model of the solar collector �eld is based on a compact LE model for the temperature di�erence is shown in

Figure 2. The new temperature di�erence between the inlet and outlet depends on the irradiation, oil �ow and previous

temperature di�erence. This model provides the driving force for the simulator, and the speed of the change depends on

the operating conditions.

A multimodel approach based on fuzzy LE models has been developed for combining specialised submodels. The approach

is aimed for systems that cannot be su�ciently described with a single set of membership de�nitions because of very strong

nonlinearities. Additional properties can be achieved since also equations and delays can be di�erent in di�erent submodels.

In the multimodel approach, the working area de�ned by a separate working point model. The submodels are developed by

the case�based modelling approach.

For model development, the training data consist of several data sets. Some overlap of the working point areas is automat-

ically introduced when process data is used. Fuzzy C-Means Clustering is used for �nding these overlapping operating areas

(Figure 3). Alternatively the operating areas can be obtained by Self-organizing Maps as well (Figure 4). The delays are

taken into account in tuning. The interaction matrix is normally the same for all working areas, which is quite reasonable

since the directions of interactions do not change considerably between di�erent working points. The di�erences between

the models are handled with membership de�nitions.

The working point variables already de�ne the overall normal behaviour of the solar collector �eld. The model shown in

Figure 5 has a quite high correlation to the real process data (Figure 6). The di�erences have a clear relation to operating

conditions, e.g. oscillatory behaviour is a problem when the temperature di�erence is higher than the normal. Separate

dynamic models (Figure 2) are needed to capture the dynamic behaviour in di�erent operating conditions (Figure 3).

Various modelling methodologies have been compared for both dynamic and working point models in the FuzzEqu Toolbox.

Feedforward neural networks, radial basis networks and ANFIS method provide better �tting to the training data but

generalisability is worse in these systems as they include parts which are not consistent with process operation. Each LE

submodel could include several alternative equations combined with fuzzy logic but these models have same over�tting

problems. According to the tests with real process data, the fuzzy LE system with four operating areas is clearly the best

overall model.
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Figure 3: Four operating areas obtained by Fuzzy C-Means Clustering.
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Figure 4: Four operating areas obtained by a Self-organizing Map.
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Figure 5: LE model for working point variables.
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Figure 6: LE model for working point variables.

3.4 Fuzzy�ROSA Method (FRM)

The Fuzzy�ROSA1 method (FRM) serves for a data�based generation of fuzzy rules which model a given input�output

dependency. The basic idea of the FRM is to apply a relevance test to single fuzzy rules to assess their ability to describe

a relevant aspect of the system under consideration [14, 15]. This reduces the problem of �nding a good rule base to the

problem of �nding single relevant rules. On the other hand, since each rule with high relevance is supposed to express an

important aspect of the system, such rules are meaningful by themselves, which leads to more transparent and comprehens-

ible rule bases.

The FRM uses generalising (incomplete) rules, which consist of a varying number of linguistic statements (combination

depth) in the premise. If there are fewer statements than input variables, one rule covers several linguistic input situations.

The rule generation process is divided into four main steps [5]. There are alternative strategies available for each step, so that

FRM can be adapted to di�erent application requirements (e.g., for modelling, classi�cation, approximation or prediction)

and problem sizes (e.g., numbers of variables, linguistic values and data sets).

3.5 Combined Approach

In many real�world applications the functional relationship between the output variable and the input variable may be

partly smooth and partly complicated nonlinear [5]. A straightforward application of the FRM may result in a high number

of rules or an undesired competition between locally and globally acting rules.

To overcome this problem, a cascaded rule generation (Figure 7 left) has been proposed in [16]: A �rst pass generates a

submodel A for the more or less smooth global structure, a second pass generates a submodel B for the remaining usually

locally complicated error "1 between submodel A and the real process. The �nal model is the superposition of the sub-

models A and B (Figure 7 right). The applicability of this approach has been demonstrated in [17, 18] for the load prediction.

Since smooth dependencies can be described easily by simple equations, we take the Linguistic Equations (LE) as a prom-

ising approach for the generation of a compact submodel A. Since complicated local structures are e�ciently detected by

the FRM, we apply the FRM for the generation of submodel B.

Thus the cascaded modelling with the LE and FRM combines the advantages of both methods, which can result in a

considerable improvement of the quality of the resulting �nal model. Feasibility of the combined LE�FRM approach was

demonstrated by applying it to a solar power plant [5].

1RuleOrientated Statistical Analysis



Figure 7: Cascaded modelling (left) and resulting model (right)
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Figure 8: Simulation results of the LE model (July 23, 1998).

4 Solar Plant modelling

4.1 Dynamic LE Simulator

The dynamic model for temperature di�erence between inlet and outlet temperatures of the collector �eld has been de-

veloped for the solar collector �eld. The simulator includes models for di�erent operating conditions. Smooth transitions

between the models is based on fuzzy logic. Working point model is de�ned by the irradition and the di�erence between the

inlet and outlet temperatures.

According to the test results at the Plataforma Solar de Almeria, the dynamic simulator of the solar collector �eld represents

very accurately the �eld operation (Figure 8). In steady weather conditions, the present simulator operates within 2 degrees

centigrade. Oscillatory conditions are also handled correctly. The simulator is based on the multimodel LE approach with

four specialised LE models developed for di�erent operating conditions. The simulator moves smoothly from startup mode

via low mode to normal mode. Later the �eld visits shortly in high mode and low mode before returning to low mode in

the afternoon.

Correlation between the calculated and measured temperatures are very high for all time period: 0.992 for the whole day,

0.988 for the normal operating area and 0.961 for the startup period. The relative errors are 2.9 percent for the whole day,

0.7 percent for the normal operating area and 16.8 percent for the startup period [5].

For startup the dynamic LE simulator requires improvement since the process changes considerably during the �rst hour [5].

The simulator underestimates the temperature growth because of unevenness of the oil �ow. For radiation disturbances, the

LE simulator operates quite well: the temperature is on the appropriate range all the time and the timing of the changes

is very good. The simulator can also handle correctly oscillations although the dynamics depends on the operating point.

A considerable temperature shift can be seen some periods. The LE model should be improved in these areas. Another

alternative is to combine LE modelling and fuzzy modelling.
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Figure 10: Simulation results of the the combined LE�FRM model (June 17, 1997).

6 Conclusions and Outlook

The combined modelling approach improves performance of the dynamic simulator. The smooth and fairly accurate overall

behaviour is achieved with Linguistic Equations. The result is further improved by fuzzy systems generated for special

situations with Fuzzy�ROSA method. The combined dynamic model is feasible for controller tuning but more special cases

need to be analysed to expand the operating area of the dynamic simulator. Fuzzy clustering methods provide feasible

techniques for selecting new cases for modelling from the extensive experimental data.
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