
WinDali - An Open-Structured Component
Modeling and Simulation Program Based on

Standard Programming Languages

Morten Juel Skovrup
Dept. of Energy Engineering

Technical University of Denmark

1 Abstract
This paper presents a modeling and simulation program originally aimed at creating
models of refrigeration plants by modeling the individual components in the plant and
thereafter connecting the models to form a system-model.

The paper presents a method for connecting component models to form complete
system-models. The method includes handling of discontinuities and state shifts both
locally in the components and system-wide. To handle the states of the components the
concept of local, input and output states is introduced.

Connecting components to system-models generate extra equations and a method for
reducing the connection variables is described. This method also handles variables that
are carried unchanged through a component.

The paper describes the structure and features of the modeling and simulation program.

2 Terms used in this paper
The following table summarizes the terms used in this paper.

Term Explanation
Dynamic variables Variables that appears differentiated (with respect to time) in the

equations. The symbol y will be used for dynamic variables.
Static variables Variables that do not appear differentiated in the equations. The symbol x

will be used for static variables.
Independent
variable

y is differentiated with respect to the independent variable. Normally this
equals time, and the symbol t is used for the independent variable.

Parameters Quantities that are set to a constant before simulation. The symbol p will
be used for parameters.

States For example a valve may be in on of two states: Open or Closed. These
logical states will normally change the equations describing the physical
system. The number of logical states for a model is the number of
different sets of equations used to define the model. The symbol s will be
used for states.

Discontinuities Discontinuities are a way to describe abrupt changes in the physical
system that is modeled. For example, by describing the process of a
valve suddenly closing as a discontinuity, one avoids describing in detail
the valve position while it closes. A discontinuity indicates that the
physical system shifts to another logic state. So describing abrupt
changes as discontinuities involves a description of the possible states of
the physical system. The conditions causing the change of logical state
must also be formulated.

Initial value
problems

A problem where the present state of the system is known, and the future
state is to be determined. Problems that can be formulated as initial value
problems can be solved by WinDali (note that initial value problems does
not in general require that the independent variable is time).

DAE Differential Algebraic Equation. An equation system that consists of
coupled ordinary differential equations and algebraic equations, for
example:

()ln

d y x
d t

x x y x

=

= + +

Solver The numeric code that solves the system of DAE’s. The solver integrates
the differential equations, solves the algebraic equations and handles
discontinuities.

3 Introduction
WinDali is a modeling and simulation system for Microsoft Windows™ 95, 98, NT 4.0
or later. “Win” states that it is made for Microsoft Windows®, and “Dali” that it solves
Differential Algebraic Equations (in Danish equations is “Ligninger”). Dali was
originally a simulation system made for the DOS platform by Kim Askjær [1]. In
WinDali only the original solver from Dali is unchanged, and a graphical user interface
and a component modeling system has been added.

4 Program architecture
The figure below shows the structure of WinDali.

System
modelling

Simulation
program

Component
file format

Model file
format

Solver file
formatCompiler

Free Pascal

Borland Delphi ®

C

Fortran

C++

Free Pascal

Borland Delphi ®

C++

DLL

DLL

Compiler

Compiler

Figure 4.1. Structure of WinDali.

In Figure 4.1 there are four different types of boxes:
1. Square boxes indicate a computer program – that is an application with some

sort of user interface.
2. Square boxes with shadows indicate a file format that has to be complied with.

3. Rounded boxes indicate compilers, i.e. programs that convert source code to
binary code.

4. Diamond shaped boxes indicating a Windows DLL (see later).

There are two points of attack when a model is created. Either the Component File
Format or the Model File Format.

The Component File Format is for users who want to build system models using
component modeling. Currently the components can be created in Free Pascal1 or
Inprise Borland Delphi™, but support for other languages is planned.

When the components have been compiled, they can be connected into systems in the
System modeling program, and the result will be a model file, which complies with the
Model File Format. Currently the System modeling application has not been developed,
so the components have to be connected manually in the model file. Another limitation
is that the language used to build the components (Free Pascal or Borland Delphi) also
has to be used when the components are connected. This is due to the differences in the
way programming languages implement objects.

The Model File Format can be used if component modeling is not being used. Because
of this, non-objected oriented programming languages – like C and Fortran – can be
used to create the model file. Examples of models created using Inprise Borland
Delphi™, Free Pascal, Compaq Visual FORTRAN ™ and Microsoft Visual C++™ are
included with WinDali.

When the model has been created it is compiled to a Windows DLL (Dynamic Link
Library). The concept of libraries is common for all programming languages. In Fortran
they are called Modules, in C and C++ Libraries, and in Pascal Units. The difference
between normal (static) libraries and dynamic link libraries is that a static library is
linked to the program when it is compiled (and will be an integrated part of the
executable), while dynamic link libraries are linked to the program at run-time. Figure
4.2 shows the difference between static and dynamic link libraries.

Code

Libraries

Code

DLL

Normal
Executable

Executable
using DLL

Linked at
compile time
(static link)

Linked at
run time

(dynamic link)

Figure 4.2. Difference between static and dynamic linking.

1 Free Pascal is a freeware pascal compiler with support for object oriented programming [2]. Free Pascal
is included with WinDali together with an integrated development environment (IDE) called Free Pascal
Editor.

The advantage of using DLL’s is that the Simulation Program is completely
independent of the model, and that the model can be formulated in any programming
language capable of creating Windows DLL’s.

The model DLL can be loaded into the Simulation program, where simulation results
can be plotted or saved to disk. The simulation program also enables automatic
parameter studies.
As for the model, the equation solver is also loaded into the Simulation program at run-
time. The solver should comply with the Solver File Format, but because the solver is
also a DLL it can be programmed in any language capable of creating DLL’s.

WinDali has the following features:

• Solves a system of semi-explicit differential algebraic equations.
• Solves initial value problems.
• Handles discontinuities and state shifts.
• Modeling is equation based. This implies that models are formulated by writing

equations instead of graphically building the equations (as is the case in Simulink
and VisSim).

• The user interface in the Simulation program is automatically generated from the
information in the model DLL. This is possible because the model install itself into
the Simulation program by calling a series of predefined functions. The same
applies to the solver DLL, which also has the possibility of exposing parameters and
settings to the user of the Simulation program.

• The structure of WinDali is open. As long as compliance with the Model File
Format and the Solver File Format is ensured, any of the programs (square boxes in
Figure 4.1) can be replaced.

• Any solver, capable of solving differential algebraic equations with discontinuities,
can be used.

• It is easy to create distributable copies – it is simply a task of distributing the
Simulation program, the model DLL and the solver DLL (this process is automated
in the Simulation program).

• It is freeware.

The Model File Format, Component File Format and Solver File Format are explained
in detail in [3], which serves as a user and programmers guide.

Compared to other modeling and simulation programs the advantages of WinDali are
that the model is formulated in standard programming languages, which means that
• The modeler does not have to learn a new programming language.
• Debugging tools are already available.
• Using libraries with property data, mathematical routines etc. is simple.
• There is a complete freedom in creating the model – it can for example contain a

specialized graphical user-interface.
• Component models can be in compiled form – i.e. you do not have to distribute the

source code of component models.

5 Modeling environment
As stated previously WinDali is capable of solving systems of semi-explicit differential-
algebraic equations (DAE’s). This means you should be able to write the problem to be
solved the following way:

(), , , ,

0 (, , , ,)

d y f t x y p s
d t

g t x y p s

=

=
 (5.1)

Problems, which can only be formulated as a system of implicit DAE’s, cannot be
solved by the current version of WinDali (but this is not due to the structure of WinDali
but rather the capabilities of the included solver).

In equation (5.1) f denotes a vector of the right hand sides of the differential equations
and g the static (algebraic) equations. Note that both the right hand sides and the static
functions are functions of the current state s of the system. Furthermore WinDali allows
the number of static equations (and thereby the number of static variables) to change
between different states.

The equations constituting the model are specified in WinDali as a series of residual
equations, implying that the equations are solved simultaneously. It also implies that
WinDali does not require any causality in the model formulation, i.e. WinDali does not
require the model to have an input-output structure.

The modeling environment that comes with WinDali consists of an IDE and a freeware
Pascal compiler. Pascal was chosen as the primary language because the students at our
department are familiar with Pascal.

The model is formulated by filling out 11 predefined Pascal-procedures in the model
file. This is the case whether the model is formulated using component modeling or not
(the only difference is that when using component modeling these 11 procedures are an
integrated part of the component).

3 of the 11 procedures are of primarily interest (i.e. the rest are optional): one where the
problem is specified by specifying the number of states, the number of dynamic
variables and the number of static variables in each state, one where the equations are
formulated and finally one where the conditions for state-shifts are formulated.

The following figure shows the sequence in which the 11 procedures are called from the
simulation program:

1) Load Model 2) SetUpProblem 3) Start

4) PreCalc

5) Stop 13) EndCalc

6) ModelEquations

7) StateShift

12) OnSolution8) OnSolution

9) OnStateChange

10) ModelEquations

11) OnSolution

Yes

No

NoYes

Figure 5.1 Calling sequence for the procedures in the model file

The rounded rectangles in Figure 5.1 represent user-actions in the Simulation program.

Note that the boxes 6 and 7 in general are called several times at each time step. This is
because the solver iterates to find a solution. Four of the predefined procedures are not
represented in Figure 5.1. The procedure OnQuit is called when the user closes the
simulation program or selects another model. The procedures OnUIValueChange,
OnSaveSettings and OnLoadSettings all have to do with controlling the user-
interface. They enable the modeler to program actions, which are carried out in response
to actions performed by the user of the simulation program (for example if the user
presses a button, the model could display a specialized dialog, which enables the user to
set some parameters).

The calling sequence with no state shift (branch 5-6-7-12) is straightforward. But the
calling sequence with a state shift requires some explanation.

Lets say that we want to model a solenoid valve that is On when a temperature T is
above 10°C, else it is Off. We want to record the temperature and the On-Off signal to
the valve, and the initial temperature is 20°C. A plot of the temperature and the On-Off
signal could look like this:

T

On

Off

10°C

20°C

8

11

t2t1

Figure 5.2 Temperature and On-Off signal.

When the solver reaches t2 where the valve goes On, it first calls OnSolution (block 8)
to inform the model file that a solution has been found. But at t2 the equation system
also shifts state, which means that the solver has to start all over, and possibly with a
new set of static equations and corresponding variables.

The static equations have to be solved before the solver continues, and for this the
solver needs guesses on the static variables.

In SetUpProblem default guesses on the static variables are given for each state, but if
these guesses for some reason need to change, OnStateChange (block 9) is called. After
OnStateChange, ModelEquations is called to solve the static equations in the new
state, and before the solver continues, OnSolution is called to enable plotting of point
11 in Figure 5.2.

6 Component modeling interface
From the system point of view, a component is a black box, which can connect to other
components and has some functionality.

Component
core

C
on

ne
ct

or

C
on

ne
ct

or

Pins Pins

Figure 6.1. Conceptual component.

A component has a core, which defines the model of the component. It also has one or
more connectors, which have one or more pins. A pin is just a connection variable – for
example mass flow. Figure 6.1 shows a component that has two connectors with each
three pins.

When a model of a component is created, one of the difficulties is to determine the
number of equations that should be used to describe the component.

The simplest rule that can be used is to look at the number of pins on the connectors. If
the connectors represent physical connections – as for example the suction and
discharge port of a compressor – then the value of the variable that a pin represent could
be measured on both sides of the component, and any change in a pin variable would

require an equation inside the component to describe that change. If on the other hand a
pin value is unchanged over the component, then no equation is necessary for that pin.

The conceptual component in Figure 6.1 can be extended to indicate whether a
connection variable is left unchanged while passing the component:

Component
core

C
on

ne
ct

or

C
on

ne
ct

or

Pins Pins

Figure 6.2. Component with variable carried unchanged

through the component.

In Figure 6.2 the variable on the top pin is carried unchanged through the component.
This is indicated with a dotted line.

Normally the pins act as pairs, that is the physical quantity on for example pin 2 on the
left connector is the same as the physical quantity on pin 2 on the right connector. This
is not always the case as can be seen from the following example:

Heat exchangerIn O
ut

Ambient

inm� outm�

outTinT

aT aQ

Figure 6.3. Heat exchanger example.

In the heat exchanger in Figure 6.3 the pins inm� , outm� and ,in outT T act as pairs. The
connection to the ambient has no obvious pairs – the pins represent different physical
quantities. A better way to draw the heat exchanger would be:

In O
ut

T ambient

Q ambient

outm�

outT

inm�

inT

aT

aQ

Figure 6.4. Heat exchanger with T-Q pair.

On this figure it is more clearly seen that Q and T to the ambient are related, and
actually can be said to be a pair. An input/output description of the heat exchanger
would be that it receives information about the ambient temperature and as output gives
heat flow to the ambient. Defining the pins as pairs (in the following called connection
pairs) is helpful when the necessary number of equations the component have is
determined. Connection pairs do not necessarily have to be of only two pins. An
example of this is a junction of three pipes, where the pressure of the three ports forms
one pair and the mass flow of the three ports form another pair.

A rule of thumb that can be used when component models are created would then be:

6.1 Connecting components
When components are connected, the pins of one component are connected to the pins
of another component and thereby creating connection equations. Connection equations
are simply identity equations stating that:

 , 1 , 2i component i componentPin Pin= (6.1)

Figure 6.5 shows an example where two components are connected. The components –
C1 and C2 – each have two connectors with the names In and Out, and each connector
has two pins named P and m. The connector names do not indicate that the components
are connected according to some input/output scheme; they merely suggest that the
component define a sign for the connection variables.

C1In O
utp

m

p

m
C2In O

utp

m

p

m

Figure 6.5. Two connected components.

The connection equations will be:

 1, 2,

1, 2,

C out C in

C out C in

P P
m m

=

=
 (6.2)

Connection variables will almost always be static variables, and the connection
equations will be static equations. The connection in Figure 6.5 will generate 2 static
equations, but there are 4 static variables: 1, 2, 1, 2,, , ,C out C in C out C inP P m m .

Counting the pins of components C1 and C2 gives 8 static variables, and assuming that
C1in is connected to C2out then the connections will give 4 static equations. So there is
still 4 equations missing.

These 4 equations have to come from the components and if the system were modeled
as one equation system (that is no components) then these 4 equations would probably
be the only static equations. This is because the connection equations are sort of dummy
equations that could be replaced by a common variable:

1 1, 2,

1 1, 2,

2 2, 1,

2 2, 1,

C out C in

C out C in

C out C in

C out C in

P P P
m m m
P P P
m m m

= =

= =

= =

= =

 (6.3)

So now there is 4 static variables and 4 equations (that come from the components).

Count the number of connection pairs – not counting connection variables
that are carried unchanged through the component – this number equals the
number of necessary equations.

This reduction – assigning common variables to connections – is automated in WinDali.
Every time two components are connected, the system assigns a common variable to
each pin in the connection.

The second type of reduction that WinDali automates is when a variable is carried
unchanged through a component, as illustrated in the following figure:

C1In O
utp

m

p

m
C2In O

utp

m

p

m

C2out is connected to C1in

P2

P1

m

m1

Common

Figure 6.6. Reduction of variables. Note that C2out is connected to C1in.

Figure 6.6 shows that when PC1, out is connected to PC2, in then the common variable P1 is
created, and that when PC2, out is connected to PC1, in then the common variable P2 is
created. When component C1 is created then it is immediately recognized that the m-
pins of In and Out is equal, and a temporary common variable is created. When mC1, out
is connected to mC2, in the common variable is replaced with m1. When mC2, out is
connected to mC1, in, the system recognize that mC1,in already has a variable assigned and
m1 is replaced by the variable m, which is also equal to mC2,out.

The original system of 8 equations with 8 static variables is now reduced to 3 equations
with 3 static variables: P1, P2 and m.

As stated before the components are responsible for providing the three static equations
that make it possible to solve the equations. But as the system handles the connection
variables, the components should not regard the connection variables as variables
owned by themselves – they should only provide equations for them.

When the components defines a sign for the connection variables, it is necessary to
distinguish between two types of connection variables2:

1. Flow variables, which are variables that can have a direction – for example mass
flow, heat flux and current.

2. Potential variables, which are variables that cannot have a direction – for
example pressure, temperature and voltage.

2 Flow variables are sometimes called “through” variables, while potential variables sometimes are called
“across” or “effort” variables.

The variable reduction scheme requires that the system has complete control over the
connection variables. This implies that each component has to define, which pins
represent flow variables, and which direction a connector defines as positive for flow
variables (either positive into the component or positive out of the component). If for
example the Out connector of the C1 component in Figure 6.5 is connected to the Out
connector of C2, and the mass flows from C1 to C2, then the mass flow into C2 would
have the wrong sign (be positive), if the system did not realize that the common variable
for the connection should change sign when the equations in C2 is called.

In the current implementation of the component system used in WinDali, it is not
possible to specify that a connection variable is carried unchanged through a component
in one state, but is not in another. This implies that if for example a pipe component
defines a residual equation for the pressure drop in a situation where there is flow
through the pipe, then it also has to define a residual equation for the pressure drop in a
situation where there is no flow (i.e. a residual equation stating that pressure into the
pipe is equal to pressure out of the pipe).

6.2 Handling states
Handling states is a bit more difficult than handling the connection of components and
the connection variables.

In energy systems, shifting between states is normally initiated by the control
equipment. If for example a thermostat is controlling a refrigeration plant, then the
thermostat sets the compressor On or Off according to the temperature limits set in the
thermostat. This kind of state shifting is recognized intuitively. But there might occur
other types of state shifts in the system. If for example an evaporator is modeled, then
the model might be designed in such a way that the equation set shifts when the fluid in
the evaporator shifts from being two-phase to gas. This is an internal or local state shift
in the evaporator; but as the solver only operates with system states it also changes the
state of the system.

In WinDali there are three kinds of states:

1. Local states
2. Output states
3. Input states

Local states are, as in the evaporator example above, states that are local to a
component. These states will change the state of the system, but other components will
not be affected by the state change.

Output states are local states that can affect other components. If for example the
thermostat from before sets the compressor Off, there might be other components in the
system that requires to know that the compressor is Off – i.e. the Off state signal from
the thermostat is an output state. It is important to note that the nature of state-shifting
signals is input/output. The shifting of a state is controlled by one component and when
it shifts this information can be used by other components.

WinDali supports output states to be combined by several local states. If for example a
pump and its controller is modeled as one component, and the pump has two capacity
levels, then the pump might define 3 local states:

1. Capacity level 1
2. Capacity level 2
3. Off

Other components might only be interested in whether the pump is On or Off, so state 1
and 2 are combined into one output state called On.

Input states are states of a component, but they are defined by other components.
Taking the evaporator example from before then the evaporator might require
knowledge of whether the compressor is On or Off (besides having the two local states
TwoPhase and Gas). The evaporator component can specify that it has two input states,
On and Off, and when the system model is created then the output states from the
thermostat can be connected to the input states of the evaporator.

When a component has input states the total number of states it can be in changes. If for
example the evaporator defines the two local states and the two input states, it can
(logically) be in four states3:

1. TwoPhase, On
2. Gas, On
3. TwoPhase, Off
4. Gas, Off

But as the evaporator only defines 2 of the 4 states, it is not allowed to specify state
shifts from state 1 or 2 to state 3 or 4 (or reversed)

Input states may be set as a result of several components shifting state. Consider the
following example:

C1

C2

Figure 6.7. Type of input state.

Component C1 in Figure 6.7 has two input states, On and Off, which should be set if
there is flow or no flow to the component. C2 is just a restriction – for example a pipe.
The pump specifies two output states, On or Off, to indicate whether it is running or not,
and the valve also specifies two output states, On or Off, to indicate whether is open or
closed. The output states in the valve and the pump are both connected to the input
states of component C1. The system can be in the following states:

3 If the evaporator defined three local states it could be in 6 states – the number of local states times the
number of input states.

System state Pump Valve C1
1 On On On
2 On Off ???
3 Off On ???
4 Off Off Off

Table 6.1. Unresolved input states.

The states 2 and 3 are indefinite, as C1 does not know which state it should be in when
both its input states are set. This issue is resolved by requiring that an input state has a
type – it can either be an OR state or an AND state. If the input state is OR then if just
one component connected to the state tries to set it, then it will be set. If the input state
is AND then all components connected to the state have to set it, before it will be set. In
the example above C1 should specify that the input state On is an AND type, and that
the input state Off is an OR type. In that case the system can be in the following states:

System state Pump Valve C1
1 On On On
2 On Off Off
3 Off On Off
4 Off Off Off

Table 6.2. Resolved input states.

When the system model is created by connecting components, WinDali checks each
component to generate the total number of states of the system.

7 Conclusions
WinDali is designed as an open-structured modeling and simulation package. This
means that the modeling interface, the simulation interface and the numerical solver has
been split into separate modules, which allows any of the modules to be replaced as
long as new modules comply with the specified file formats.

The modeling language used in WinDali is based on existing standard programming
languages. This has the advantage that the modeler has complete freedom in choosing
the features the model should posses. On the other hand, the model file format is
structured in such a way that people with a minimum of programming experience are
able to use it. The component file format can be used without having knowledge of
object oriented programming, but it is more complex than the modeling file format.

The component file format is used to build models of the components in the system.
When this has been done, it is a simple task to connect the components and create the
system model using the model file format. This does not mean that there is not a need
for a graphical user interface where the components can be connected by simply
drawing the connections, but this is left as suggestion for future work.

One of the main features of WinDali is that the user interface of the simulation program
is created from the specifications in the model. Creating a graphical user interface is
normally a very time consuming task, but when the interface is generated from the
model, more time can be spent developing the model. The graphical user interface also
makes parameter studies and keeping track of simulation cases easy.

The following figures show screendumps from the modeling and the simulation
programs.

Figure 7.1 Screendump from Free Pascal Editor.

Figure 7.2 Screendump from Simulation program.

8 References
[1] Askjær, Kim Friis – Brugervejledning til DALI. En differential-algebraisk

ligningsløser. Danmarks Tekniske Højskole, Laboratoriet for Køleteknik, F94-
02. Januar 1986.

[2] Free Pascal Compiler, http://www.freepascal.org/
[3] Skovrup, Morten Juel – WinDali – A Modeling and Simulation System for

Microsoft Windows. Technical University of Denmark, Department of Energy
Engineering, ET-Ph.D. 2000-04. April 2000.

[4] Skovrup, Morten Juel – Systematic modeling and simulation of refrigeration
plants. Technical University of Denmark, Department of Energy Engineering,
ET-Ph.D. 2000-04. April 2000.

http://www.freepascal.org/

	Abstract
	Terms used in this paper
	Introduction
	Program architecture
	Modeling environment
	Component modeling interface
	Connecting components
	Handling states

	Conclusions
	References

