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ABSTRACT. The global thermal behavior of buildings is very difficult to model, because of its
complex geometry and of the numerous interacted phenomena, such as heat and mass flows,
moisture transfers, etc. In this paper, a general numerical strategy based on splitting into blocks
is proposed to solve the steady state of airflow-energy-moisture (AEM) model. Simulations of a
complex configuration show a good reliability of the block method. Also the observed impact of
model components on the on the numerical convergence is in good agreement with predicted
effects. This block strategy shows its good adaptation to the AEM models and therefore it will
be implemented in CLIM2000 simulation environment to improve its capacities for the
simulations of global models.

1. Introduction

The main objectives of building physics are to reconcile user’s comfort and energy
efficiency in the design of buildings. As these two criteria lead to contradictory
recommendations, the numerical simulations are often the only way to predict thermal
behavior of a building. The modeling of global behavior is important for the correct
thermal design of new buildings and becomes essential in some special fields such as
for example health care or electronic industry.

The global thermal behavior of buildings is very difficult to model. Firstly, the
geometry of a building is in general sole and complex. Therefore often simplified,
lumped models are used in order to bypass a detailed description of building’s geometry.
Secondly, numerous coupled phenomena influence the thermal behavior, such as heat
and mass flows, moisture transfers, etc. For comprehensive simulations of building’s
behavior, the interactions between these phenomena must be represented. Such global,
integrated models generate ill-conditioned and hard to solve systems of equations.

We are interested here in the integrated airflow-energy-moisture (AEM) multizone
models, where one ’zone’ corresponds to one room. These models are implemented in
CLIM2000 building simulation environment, developed by Electricité de France [1].
For numerical computations CLIM2000 uses ESACAP [2], general solver of algebro-
differential equations, developed by StanSim (Denmark).

This work is a part of a research project devoted to the development of a reliable
method enabling easy simulations of buildings' thermal behavior using global models.
The aimed method should be very general in order to allow for simulations of very
different configurations of AEM models without any intervention of the user: building
physicist and not numerical analyst. Some preliminary results showed that block
methods need to be used in order to solve simple configurations of the integrated AEM
model. The aim of this paper in then to check the reliability of the block method to



solve complex configurations. First, the fundamental principles of the AEM models are
introduced, and commonly met numerical problems are discussed. Then, using
previously published results, a general numerical strategy to solve AEM models is
proposed. In the second part of this paper, proposed method is applied to a complex
configuration. On this example the relationship between different model’s components
and the performance of the numerical strategy is analyzed.

2. Airflow-energy-moisture modeling

2.1. General presentation

The objective of airflow-energy-moisture modeling is to represent heat and mass
transfer inside the buildings in order to predict both indoor climate (temperature and
moisture content) and energy consumption. The fundamental equations of the AEM
model are mainly three types of balances:

- dry air mass balance : determining air movements (variable: air pressure at ground
level),

- vapour mass balance : describing moisture transfers in a multizone space
(variable: air moisture content),

- enthalpy balance : determining energy consumption and inside temperatures
(variable: air temperature).

In more complex configurations additional equations may be introduced to describe the
transfers through building envelope, the heating system, the moisture storage, etc. The
different equations are strongly coupled together, following the relationships presented
in figure 1.

Figure 1. Main couplings between different balance equations

The resulting mathematical model has strong algebraic non-linearities, mainly due to
two factors :

- airflow equations, linking pressure difference (∆P, [Pa]) and the mass flow (Q,
[kg/s]) using the power law: Q = K ∆Pn, (K and n : power law real coefficients),

- perfect gas relationship: PV = MrT ; linking pressure (P, [Pa]), temperature (T,
[K]) and mass (M, [kg]) with air volume (V, [m3]) and perfect gas constant (r,
[J/(kg K)]).

2.2 Numerical difficulties

The integrated AEM model is expressed as a system of algebro-differential equations.
However, in most configurations, this system of equations turns out to be impossible to
solve using general purpose solvers, such as ESACAP. Let’s consider for example the
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situation presented in Figure 1, describing steady-state moist airflow between two
rooms (including two-way flow through the open door). It is represented using 6
algebraic non-linear equations (see [3] for details). This model is very simple from the
physical point of view (represents only balance equations of the inside air, no heat
sources or transfers through the envelope are described), however its numerical
behavior is typical off all encountered difficulties. In a set of 60 different simulations of
this configuration (varying: parameter values, external climate, starting points, solving
algorithms), using general numerical algorithms, only 1 computation converges.

Figure 2. Example 1: Moist air flow in a two-room configuration

In order to improve the performance of the numerical algorithm it is important to
understand the origin of encountered convergence difficulties. Most of the popular non-
linear solvers (including ESACAP) are based on Newton’s direction [2], [4], [5], [6],
where at each non-linear iteration we need to solve the linear system (1).

J(x) dx = - F(x) (1)

In the AEM models, the jacobian matrix, J(x), is ill-conditioned. Even for very small
systems, such as the example 1, the associated matrix has the condition number of about
109. This high condition number expresses the physical sensitivity of the coupled model
to variations of boundary conditions. It is mainly due to the representation of the airflow
through large openings (such as doors). We use here the popular simplified expression
based on Bernoulli equation [7]. In such configurations different flow directions are
possible : 1→2, 2→1 and even a two-way flow : 1↔2. Integration of different
possibilities and of their transitions into the airflow model introduces situations difficult
to solve. The airflow model is very sensitive to even small variations of the inside
temperature or moisture content. Typically, an important difference of the mass flow of
about 100 kg/h can be introduced by a very small difference of pressures of about 10-2 -
10-3 Pa. At the moment, no robust method to compute the solution of the complete
problem exists [3], [8] and [9].

2.3. Adapted numerical method

2.3.1. General principles

In building physics, the steady state computations are extremely important. The
knowledge of the steady state of the AEM system is in general needed before the
analysis of its dynamical behavior. This is essential for the airflow inside the building.
Therefore, in this work we concentrate on the steady state behavior, that is on the
solving of a non-linear algebraic system F(x)=0.

As the simultaneous resolution of the complete system of equations failed on our
problem, an adapted numerical approach must be used. In order to achieve numerical
convergence, the complete model have to be divided into smaller blocks. The splitting
into blocks should be based on general criteria, in order to allow for an automatic use of

6 equations :
- 2 vapour mass conservation (zones 1 and 2)
- 2 dry air mass conservation (zones 1 and 2)
- 2 energy conservation (zones 1 and 2)
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the splitting. A good way to fulfill this requirement is to follow the physical form of the
system. In our case, two splittings can be performed:

(R) into ’Rooms’ (multizone modeling), by regrouping balance equations of each
zone of the partitioned space, (2 blocks of 3 equations each for example 1)

(S) into ’sub-Systems’ (coupled airflow-energy-moisture modeling), by regrouping
balance equations of the same type (dry air mass, vapour mass, energy), (3
blocks of 2 equations each for example 1).

Practical application of both possibilities showed that the splitting (S) is far more
efficient (see [10]). Additional benefit from the (S) splitting is that basic equations of
each physical sub-system are mainly linear and therefore easy to solve. However, the
correct splitting is not sufficient to ensure reliable convergence. The strategy to update
values of variables during the iteration process needs as well to be adapted to physical
interactions represented in the model. A hybrid Gauss-Seidel – Jacobi update strategy,
adapted to the high sensitivity of the airflow model proved to be the most effective (see
[11]).

2.3.2. Resulting algorithm

The final block algorithm, proposed for simulations using coupled AEM models is
presented in figure 3. It takes into account the (S) splitting. 3 blocks solved separately
are the 3 physical sub-systems: airflow, energy and moisture. The hybrid update
strategy from [11] is included in each global iteration. Its main role is to maintain the
flow values independent from temperature and moisture content variations during the
resolution of the energy and moisture blocks.

Figure 3. Block algorithm for AEM simulations
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Initial vector is the nil vector. Each block is solved using Newton method (also called
Newton-Raphson method), associated with a line search procedure to globalize
convergence (both algorithms are described in [6]). Jacobian matrix is computed using a
divided differences first order approximation. At the end of each global iteration, the
global residual, F(x), is computed using 

�
2 norm. Global residual expresses the non-

balance of mass or heat conservation equations, it is very well adapted to the physical
problem. This iteration procedure ensures the achievement of the solution of the
coupled system. The algorithm is implemented in a standard windows PC environment.
The results presented in the following are obtained using a tolerance of 10–9 for the
resolution of each block and of 10-6 for the global solution. All calculations are
performed using double precision numbers.

2.3.3. Application on the example 1

The algorithm presented above is applied to solve the example 1. The progress of the
iteration process can be seen in Table 1.

moisture sub-system energy sub-system airflow sub-system
global

iteration number of
iterations

global
residual

number of
iterations

global
residual

number of
iterations

global
residual

0 - - - - 3 0.1
1 1 0.5 2 0.4 3 3 10-9

Table 1. Application of block method. Iterations needed to solve one block and
global residual

In the table 1, the global residual is given after the resolution of each block. The
residual at the end of each global iteration is represented only by the values in the last
column (after the resolution of the airflow block, see also figure 3). From the results in
table 1, a very good performance of the numerical method can be seen. Only one global
iteration is needed to achieve convergence. This good performance is not surprising,
because the numerical resolution is based on physical interactions for moist air flow
model.

3. Simulations of an individual house

3.1. Comprehensive AEM model

The proposed numerical strategy is used to inquire the behavior of an individual house,
in order to check its performance to simulate real life situations. The individual house is
presented in figure 4. The AEM model of the house includes the following elements:

- mass and enthalpy balances of all air zones,
- moist air infiltration and mechanical exhaust,
- inter-room moist air transfers through open internal doors,
- thermal transfer through the envelope,
- regulated heating system composed of individual convectors in each zone.

All convectors are equipped with individual regulation, the aimed
temperature is settled at 19°C.



Figure 4. Example 2: Individual house.

The first 3 elements of the model are similar to the ones used in the example 1.
However, as the number of rooms and open doors is more important (8 rooms and 7
doors in the example 2 against 2 rooms and 1 door in the example 1) the mathematical
model more complex. Moreover, the last two elements (envelope and heating system)
are not represented in the example 1.

The mathematical AEM model of the example 2 comprises 196 equations:
- moisture sub-system : 8 equations (1 mass balance for each of 8 rooms),
- energy sub-system : 180 equations (1 energy balance for each of 8 rooms, 1

equation for the regulation of each of 8 convectors and 166 energy balances
describing heat transfer through the envelope).

- airflow sub-system: 8 equations (1 mass balances of the dry air for each
room).

3.2. Numerical simulations

3.2.1. Results from the comprehensive AEM model

The simulations are performed using the numerical strategy presented in the section 2.3.
The main results obtained are presented in figure 5.

Figure 5 shows the importance of the mixing of the air through the open doors in the
simulated house. The mixing flow is much more important that the net flow. This has
very important impact on the repartition of the heating power and on the air
temperatures inside the house. The results show the importance of the interactions
between the energy and the airflow and prove the importance of integrated modeling.
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Figure 5. Elements of the solution : interzonal mass flow (kg/h) and in each
room : heating power of each convector (W) and air temperature (°C)

3.2.2. Impact of different model components on numerical convergence

Another important point is the analysis of the numerical performance of the block
algorithm. The progress of numerical iterations is represented in the table 2.

moisture sub-system energy sub-system airflow sub-system
global

iteration number of
iterations

global
residual

number of
iterations

global
residual

number of
iterations

global
residual

0 - - - - 3 1 104

1 1 1 104 25 40 5 0.1

2 1 0.1 2 25 6 0.01

3 0 0.01 2 4 6 3 10-3

4 0 3 10-3 2 .8 2 6 10-4

5 0 6 10-4 1 .1 2 1 10-4

6 0 1 10-4 1 .03 2 2 10-5

7 0 2 10-5 1 5 10-3 1 4 10-6

8 0 4 10-6 1 1 10-3 1 7 10-7

Table 2. Application of block method. Iterations needed to solve one block and
global residual.

The results in table 2 show that in the example 2 8 global iterations are needed to
achieve global convergence, against only 1 for the example 1. This is not a surprising
result, because of the example 2 is clearly more complex than the example 1. However,
in order to check the adaptation of the block method to AEM simulations the impact of
each component of the model should be precisely analyzed. Therefore, some additional
simulations are done using some simpler models of the example 2. The models used are:

- 2a: the simplest AEM configuration, representing only moist air flow
(balance equations, interzonal airflow and ventilation),

- 2b: 2a + thermal envelope,
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- 2c: 2b + the simplest heating system (constant power: no regulation),
- 2d: 2c + proportional regulation of the heating system (this is the model used

in the section 3.2.1).

The main elements of the numerical resolution are given in table 3.

model number of equations

name
main

characteristic
total A E M

iterations in
energy block

global
iterations

2a basic 24 8 8 8 2 1

2b + envelope 188 8 172 8 2 1

2c + heat source 188 8 172 8 2 17

2d + regulation 196 8 180 8 25 8

Table 3. Impact of different model elements on the numerical resolution

Table 3 shows clearly that the description of building envelope has an important impact
on the size of the system of equations but does not affect the iteration process. In both,
2a and 2b cases, the energy block is solved in 2 Newton’s step and the global
convergence is met after one global iteration. This is in good agreement with the model,
composed mainly of linear equations. On the other hand, the energy source has no effect
on the size of the system, but causes an important rise in the number of global iterations.
The reasons of this behavior are easy to explain. A heat source in one room has an
important impact on the inside temperature, which affects the mass flow. Modification
of the mass flow affects the air temperature, etc.

As the energy balance equations for the inside air and for the thermal envelope are
linear, the energy block is easily solved in the cases 2a, 2b and 2c. The regulation of
convectors is described by non-linear equations and therefore it affects the resolution of
the energy block. On the other hand, the stabilizing effect of the regulation on the
number of global iterations can be clearly seen (cases 2c and 2d). This is also in good
agreement with the physical model. The regulation of air temperature "smoothes" the
impact of air temperature on the interzonal airflow.

Using the results presented in Table 3, the convergence rate of the block method can be
estimated. In the case when no enthalpy sources are present, the convergence is
instantaneous. In the cases 2c and 2d, convergence rate can be computed using the
equation (2):

i1i

1i2i

xx

xx ��
��

−
−

=τ
+

++ (2)

where i is the number of Newton iteration. The convergence rate for the cases 2c
and 2d is shown in figure 6 below.
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Figure 6. Convergence rate.

From figure 6 it can be clearly seen that in both cases the convergence is linear with a
constant rate. This result is a good, it indicates that even if the convergence is not very
rapid, it is effective.

4. Conclusions and future works

A general numerical strategy based on splitting into blocks is proposed in this paper to
solve the steady state of airflow-energy-moisture model. This method is based on
previously published results for the moist airflow models. It is successfully applied here
to a comprehensive model of an individual house.

The convergence is reached in all performed calculations, showing reliability of the
proposed block method to solve AEM models. Additionally, in the most complex
configurations the convergence is at least linear. Moreover, the impact of different
model components on the numerical convergence is studied. A good agreement is found
between the observed behavior and the expectations based on the physical model. These
results prove the adequacy of the proposed block method to solve complex AEM
models. Considering these conclusions, the block method is now being implemented in
the ESACAP solver. This should enable easy simulations of global behavior of buildings
using CLIM2000 code.

Moreover, use of the block methods offers some very interesting possibilities for time-
domain calculations. In a building, different phenomena have very distinct time
constants, for example less than one minute for mass transfer through an open door and
several hours for heat flow through a concrete wall. Adapting time steps to different
phenomena, can significantly diminish computing time, maintaining high numerical
precision. Preliminary tests have given some interesting conclusions [12], and future
work should develop practical recommendation concerning the splitting into blocks in
the time domain.

Also, some additional improvements are still possible, for example representation of the
thermal control system increase the number of Newton iterations needed to solve the
energy block (25 iterations with control system, against 2 without). This increase can be



limited (down to 8), through controlling the size of Newtonian step. It is also necessary
to analyze more in detail the impact of moisture models, such as moisture storage and
phase change, on the numerical resolution.
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